Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
Guangdong Cardiovascular Institute, Guangzhou, China.
J Magn Reson Imaging. 2023 May;57(5):1340-1349. doi: 10.1002/jmri.28418. Epub 2022 Aug 31.
Preoperative assessment of whether a successful primary debulking surgery (PDS) can be performed in patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains a challenge. A reliable model to precisely predict resectability is highly demanded.
To investigate the value of diffusion-weighted MRI (DW-MRI) combined with morphological characteristics to predict the PDS outcome in advanced HGSOC patients.
Prospective.
A total of 95 consecutive patients with histopathologically confirmed advanced HGSOC (ranged from 39 to 77 years).
FIELDS STRENGTH/SEQUENCE: A 3.0 T, readout-segmented echo-planar DWI.
The MRI morphological characteristics of the primary ovarian tumor, a peritoneal carcinomatosis index (PCI) derived from DWI (DWI-PCI) and histogram analysis of the primary ovarian tumor and the largest peritoneal carcinomatosis were assessed by three radiologists. Three different models were developed to predict the resectability, including a clinicoradiologic model combing MRI morphological characteristic with ascites and CA125 level; DWI-PCI alone; and a fusion model combining the clinical-morphological information and DWI-PCI.
Multivariate logistic regression analyses, receiver operating characteristic (ROC) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI) were used. A P < 0.05 was considered to be statistically significant.
Sixty-seven cases appeared as a definite mass, whereas 28 cases as an infiltrative mass. The morphological characteristics and DWI-PCI were independent factors for predicting the resectability, with an AUC of 0.724 and 0.824, respectively. The multivariable predictive model consisted of morphological characteristics, CA-125, and the amount of ascites, with an incremental AUC of 0.818. Combining the application of a clinicoradiologic model and DWI-PCI showed significantly higher AUC of 0.863 than the ones of each of them implemented alone, with a positive NRI and IDI.
The combination of two clinical factors, MRI morphological characteristics and DWI-PCI provide a reliable and valuable paradigm for the noninvasive prediction of the outcome of PDS.
2 TECHNICAL EFFICACY: Stage 2.
在患有晚期高级别浆液性卵巢癌(HGSOC)的患者中,术前评估是否可以进行成功的初次肿瘤细胞减灭术(PDS)仍然是一个挑战。非常需要一种能够准确预测可切除性的可靠模型。
研究扩散加权 MRI(DW-MRI)联合形态特征对晚期 HGSOC 患者 PDS 结果的预测价值。
前瞻性。
共纳入 95 例经组织病理学证实的晚期 HGSOC 患者(年龄 39-77 岁)。
研究领域/序列:3.0T,读出分段回波平面 DWI。
由三位放射科医生评估原发性卵巢肿瘤的 MRI 形态特征、源自 DWI 的腹膜癌指数(DWI-PCI)以及原发性卵巢肿瘤和最大腹膜癌转移灶的直方图分析。建立了三种不同的模型来预测可切除性,包括结合 MRI 形态特征、腹水和 CA125 水平的临床放射学模型;单独的 DWI-PCI;以及结合临床形态学信息和 DWI-PCI 的融合模型。
使用多变量逻辑回归分析、受试者工作特征(ROC)曲线、净重新分类指数(NRI)和综合判别改善(IDI)。P<0.05 被认为具有统计学意义。
67 例表现为明确肿块,28 例表现为浸润性肿块。形态特征和 DWI-PCI 是预测可切除性的独立因素,其 AUC 分别为 0.724 和 0.824。多变量预测模型由形态特征、CA-125 和腹水量组成,AUC 增加至 0.818。联合应用临床放射学模型和 DWI-PCI 的 AUC 明显高于单独应用其中任何一种的 AUC,且具有阳性 NRI 和 IDI。
两种临床因素,MRI 形态特征和 DWI-PCI 的结合为预测 PDS 结果提供了一种可靠和有价值的非侵入性方法。
2 级
2 级