Suppr超能文献

弥散加权磁共振成像与形态学特征评估在高级别浆液性卵巢癌初次肿瘤细胞减灭术预后预测中的应用

Diffusion-Weighted Magnetic Resonance Imaging and Morphological Characteristics Evaluation for Outcome Prediction of Primary Debulking Surgery for Advanced High-Grade Serous Ovarian Carcinoma.

机构信息

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Guangdong Cardiovascular Institute, Guangzhou, China.

出版信息

J Magn Reson Imaging. 2023 May;57(5):1340-1349. doi: 10.1002/jmri.28418. Epub 2022 Aug 31.

Abstract

BACKGROUND

Preoperative assessment of whether a successful primary debulking surgery (PDS) can be performed in patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains a challenge. A reliable model to precisely predict resectability is highly demanded.

PURPOSE

To investigate the value of diffusion-weighted MRI (DW-MRI) combined with morphological characteristics to predict the PDS outcome in advanced HGSOC patients.

STUDY TYPE

Prospective.

SUBJECTS

A total of 95 consecutive patients with histopathologically confirmed advanced HGSOC (ranged from 39 to 77 years).

FIELDS STRENGTH/SEQUENCE: A 3.0 T, readout-segmented echo-planar DWI.

ASSESSMENT

The MRI morphological characteristics of the primary ovarian tumor, a peritoneal carcinomatosis index (PCI) derived from DWI (DWI-PCI) and histogram analysis of the primary ovarian tumor and the largest peritoneal carcinomatosis were assessed by three radiologists. Three different models were developed to predict the resectability, including a clinicoradiologic model combing MRI morphological characteristic with ascites and CA125 level; DWI-PCI alone; and a fusion model combining the clinical-morphological information and DWI-PCI.

STATISTICAL TESTS

Multivariate logistic regression analyses, receiver operating characteristic (ROC) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI) were used. A P < 0.05 was considered to be statistically significant.

RESULTS

Sixty-seven cases appeared as a definite mass, whereas 28 cases as an infiltrative mass. The morphological characteristics and DWI-PCI were independent factors for predicting the resectability, with an AUC of 0.724 and 0.824, respectively. The multivariable predictive model consisted of morphological characteristics, CA-125, and the amount of ascites, with an incremental AUC of 0.818. Combining the application of a clinicoradiologic model and DWI-PCI showed significantly higher AUC of 0.863 than the ones of each of them implemented alone, with a positive NRI and IDI.

DATA CONCLUSIONS

The combination of two clinical factors, MRI morphological characteristics and DWI-PCI provide a reliable and valuable paradigm for the noninvasive prediction of the outcome of PDS.

EVIDENCE LEVEL

2 TECHNICAL EFFICACY: Stage 2.

摘要

背景

在患有晚期高级别浆液性卵巢癌(HGSOC)的患者中,术前评估是否可以进行成功的初次肿瘤细胞减灭术(PDS)仍然是一个挑战。非常需要一种能够准确预测可切除性的可靠模型。

目的

研究扩散加权 MRI(DW-MRI)联合形态特征对晚期 HGSOC 患者 PDS 结果的预测价值。

研究类型

前瞻性。

受试者

共纳入 95 例经组织病理学证实的晚期 HGSOC 患者(年龄 39-77 岁)。

研究领域/序列:3.0T,读出分段回波平面 DWI。

评估

由三位放射科医生评估原发性卵巢肿瘤的 MRI 形态特征、源自 DWI 的腹膜癌指数(DWI-PCI)以及原发性卵巢肿瘤和最大腹膜癌转移灶的直方图分析。建立了三种不同的模型来预测可切除性,包括结合 MRI 形态特征、腹水和 CA125 水平的临床放射学模型;单独的 DWI-PCI;以及结合临床形态学信息和 DWI-PCI 的融合模型。

统计学分析

使用多变量逻辑回归分析、受试者工作特征(ROC)曲线、净重新分类指数(NRI)和综合判别改善(IDI)。P<0.05 被认为具有统计学意义。

结果

67 例表现为明确肿块,28 例表现为浸润性肿块。形态特征和 DWI-PCI 是预测可切除性的独立因素,其 AUC 分别为 0.724 和 0.824。多变量预测模型由形态特征、CA-125 和腹水量组成,AUC 增加至 0.818。联合应用临床放射学模型和 DWI-PCI 的 AUC 明显高于单独应用其中任何一种的 AUC,且具有阳性 NRI 和 IDI。

数据结论

两种临床因素,MRI 形态特征和 DWI-PCI 的结合为预测 PDS 结果提供了一种可靠和有价值的非侵入性方法。

证据水平

2 级

技术功效

2 级

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验