Suppr超能文献

预测幼年特发性关节炎不同疾病阶段新发慢性葡萄膜炎的模型的建立与外部验证

Development and External Validation of a Model Predicting New-Onset Chronic Uveitis at Different Disease Durations in Juvenile Idiopathic Arthritis.

机构信息

Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, and Faculty of Medicine, Utrecht University, Utrecht, The Netherlands.

Centre for Epidemiology Versus Arthritis, The University of Manchester, Manchester, UK.

出版信息

Arthritis Rheumatol. 2023 Feb;75(2):318-327. doi: 10.1002/art.42329. Epub 2022 Dec 13.

Abstract

OBJECTIVE

To develop and externally validate a prediction model for new-onset chronic uveitis in children with juvenile idiopathic arthritis (JIA) for clinical application.

METHODS

Data from the international Pharmachild registry were used to develop a multivariable Cox proportional hazards model. Predictors were selected by backward selection, and missing values were handled by multiple imputation. The model was subsequently validated and recalibrated in 2 inception cohorts: the UK Childhood Arthritis Prospective Study (CAPS) study and the German Inception Cohort of Newly diagnosed patients with juvenile idiopathic arthritis (ICON) study. Model performance was evaluated by calibration plots and C statistics for the 2-, 4-, and 7-year risk of uveitis. A diagram and digital risk calculator were created for use in clinical practice.

RESULTS

A total of 5,393 patients were included for model development, and predictor variables were age at JIA onset (hazard ratio [HR] 0.83 [95% confidence interval (95% CI) 0.77-0.89]), ANA positivity (HR 1.59 [95% CI 1.06-2.38]), and International League of Associations for Rheumatology category of JIA (HR for oligoarthritis, psoriatic arthritis, and undifferentiated arthritis versus rheumatoid factor-negative polyarthritis 1.40 [95% CI 0.91-2.16]). Performance of the recalibrated prediction model in the validation cohorts was acceptable; calibration plots indicated good calibration and C statistics for the 7-year risk of uveitis (0.75 [95% CI 0.72-0.79] for the ICON cohort and 0.70 [95% CI 0.64-0.76] for the CAPS cohort).

CONCLUSION

We present for the first time a validated prognostic tool for easily predicting chronic uveitis risk for individual JIA patients using common clinical parameters. This model could be used by clinicians to inform patients/parents and provide guidance in choice of uveitis screening frequency and arthritis drug therapy.

摘要

目的

开发并验证一种用于预测儿童幼年特发性关节炎(JIA)患者新发慢性葡萄膜炎的预测模型,以便于临床应用。

方法

使用国际 Pharmachild 注册中心的数据建立多变量 Cox 比例风险模型。采用向后选择法筛选预测因子,采用多重插补法处理缺失值。随后在英国儿童关节炎前瞻性研究(CAPS)研究和德国新诊断的幼年特发性关节炎患者的起始队列研究(ICON)研究中的两个起始队列中验证和重新校准模型。通过校准图和 C 统计量评估模型在 2 年、4 年和 7 年的葡萄膜炎风险中的表现。创建了一个图表和数字风险计算器,用于临床实践。

结果

共纳入 5393 例患者进行模型开发,预测变量包括 JIA 发病年龄(风险比 [HR] 0.83 [95%置信区间 95%CI 0.77-0.89])、抗核抗体阳性(HR 1.59 [95%CI 1.06-2.38])和国际风湿病协会联盟 JIA 分类(寡关节炎、银屑病关节炎和未分化关节炎与类风湿因子阴性多关节炎的 HR 1.40 [95%CI 0.91-2.16])。在验证队列中,重新校准的预测模型的性能可接受;校准图表明葡萄膜炎 7 年风险的校准良好,C 统计量为 0.75 [95%CI 0.72-0.79](ICON 队列)和 0.70 [95%CI 0.64-0.76](CAPS 队列)。

结论

我们首次提出了一种验证后的预测工具,可使用常见的临床参数轻松预测个体 JIA 患者的慢性葡萄膜炎风险。该模型可由临床医生用于告知患者/家长,并在选择葡萄膜炎筛查频率和关节炎药物治疗方面提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/10108055/c6b9390d11ee/ART-75-318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验