Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
J Colloid Interface Sci. 2023 Jan;629(Pt A):103-113. doi: 10.1016/j.jcis.2022.08.156. Epub 2022 Aug 28.
Chemodynamic therapy (CDT), which suppresses tumors via the conversion of endogenous hydrogen peroxide (HO) to highly toxic hydroxyl radicals (•OH), is deemed as a cutting-edge antitumor strategy. However, the insufficient endogenous HO and up-regulated antioxidant glutathione (GSH) in the tumor microenvironment (TME) greatly impede the therapeutic effect of CDT. Herein, a versatile nanoplatform MgO@SnFeO@PEG (MSnFeP) is elaborately fabricated for boosting CDT synergetic phototherapy. In the TME, the activation of MSnFeP contributes to in situ supply of HO, generation of •OH and consumption of GSH for boosted CDT. Furthermore, photothermal therapy (PTT) and photodynamic therapy (PDT) are simultaneously stimulated by near-infrared (NIR) light exposure on MSnFeP to increase the toxic free radical yield. This strategy not only amplifies the CDT efficacy hindered by HO deficiency and GSH overexpression, but also further enhances the therapeutic effect with the combination of phototherapy.
化学动力学治疗(CDT)通过将内源性过氧化氢(HO)转化为高毒性羟基自由基(•OH)来抑制肿瘤,被认为是一种前沿的抗肿瘤策略。然而,肿瘤微环境(TME)中内源性 HO 的不足和上调的抗氧化谷胱甘肽(GSH)极大地阻碍了 CDT 的治疗效果。在此,精心构建了一种多功能纳米平台 MgO@SnFeO@PEG(MSnFeP),以增强 CDT 的协同光疗。在 TME 中,MSnFeP 的激活有助于原位供应 HO、生成•OH 和消耗 GSH,以增强 CDT。此外,近红外(NIR)光照射下的光热疗法(PTT)和光动力疗法(PDT)同时被激发,以增加有毒自由基的产率。该策略不仅放大了 HO 缺乏和 GSH 过表达所抑制的 CDT 疗效,而且还通过光疗的联合进一步增强了治疗效果。
ACS Appl Mater Interfaces. 2021-9-22
Colloids Surf B Biointerfaces. 2023-9
ACS Appl Mater Interfaces. 2022-2-2
ACS Appl Mater Interfaces. 2023-4-12
Colloids Surf B Biointerfaces. 2023-2
Colloids Surf B Biointerfaces. 2023-1