Suppr超能文献

用于原位增强光热/化学动力学/饥饿疗法的普鲁士蓝衍生纳米平台

Prussian Blue-Derived Nanoplatform for In Situ Amplified Photothermal/Chemodynamic/Starvation Therapy.

作者信息

Liang Jingyi, Sun Yaning, Wang Kaili, Zhang Yawen, Guo Linqing, Bao Zhihong, Wang Dun, Xu Haiyan, Zheng Jiani, Yuan Yue

机构信息

School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China.

School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18191-18204. doi: 10.1021/acsami.2c22448. Epub 2023 Mar 28.

Abstract

Chemodynamic therapy (CDT) is an emerging tumor treatment; however, it is hindered by insufficient endogenous hydrogen peroxide (HO) and high glutathione (GSH) concentrations in the tumor microenvironment (TME). Furthermore, CDT has limited therapeutic efficacy as a monotherapy. To overcome these limitations, in this study, a nanoplatform is designed and constructed from Cu-doped mesoporous Prussian blue (CMPB)-encapsulated glucose oxidase (GOx) with a coating of hyaluronic acid (HA) modified with a nitric oxide donor (HN). In the proposed GOx@CMPB-HN nanoparticles, the dopant Cu ions are crucial to combining and mutually promoting multiple therapeutic approaches, namely, CDT, photothermal therapy (PTT), and starvation therapy. The dopant Cu ions in CMPB protect against reactive oxygen species to deplete the intracellular GSH in the TME. Additionally, the byproduct Cu ions act as a substrate for a Fenton-like reaction that activates CDT. Moreover, HO, which is another important substrate, is produced in large quantities through intracellular glucose depletion caused by the nanoparticle-loaded GOx, and the gluconic acid produced in this reaction further enhances the TME acidity and creates a better catalytic environment for CDT. In addition, Cu doping greatly improves the mesoporous Prussian blue (MPB) photothermal conversion performance, and the resultant increase in temperature accelerates CDT catalysis. Finally, the HN coating enables the nanoparticles to actively target CD44 receptors in cancer cells and also enhances vascular permeability. Therefore, this coating has multiple effects, such as facilitating enhanced permeability and retention and deep laser penetration. In vitro and in vivo experiments demonstrate that the proposed GOx@CMPB-HN nanoplatform significantly inhibits tumor growth with the help of in situ enhanced synergistic therapies based on the properties of the TME. The developed nanoplatform has the potential to be applied to cancer treatment and introduces new avenues for tumor treatment research.

摘要

化学动力学疗法(CDT)是一种新兴的肿瘤治疗方法;然而,肿瘤微环境(TME)中内源性过氧化氢(HO)不足和谷胱甘肽(GSH)浓度过高阻碍了其发展。此外,CDT作为单一疗法的治疗效果有限。为了克服这些限制,在本研究中,设计并构建了一种纳米平台,该平台由包裹葡萄糖氧化酶(GOx)的铜掺杂介孔普鲁士蓝(CMPB)组成,并带有一氧化氮供体(HN)修饰的透明质酸(HA)涂层。在所提出的GOx@CMPB-HN纳米颗粒中,掺杂的铜离子对于结合和相互促进多种治疗方法至关重要,即CDT、光热疗法(PTT)和饥饿疗法。CMPB中的掺杂铜离子可抵御活性氧,从而耗尽TME中的细胞内GSH。此外,副产物铜离子作为类芬顿反应的底物,可激活CDT。此外,另一种重要的底物HO通过负载纳米颗粒的GOx引起的细胞内葡萄糖消耗大量产生,并且该反应中产生的葡萄糖酸进一步增强了TME的酸度,并为CDT创造了更好的催化环境。此外,铜掺杂极大地提高了介孔普鲁士蓝(MPB)的光热转换性能,温度的升高加速了CDT催化。最后,HN涂层使纳米颗粒能够主动靶向癌细胞中的CD44受体,还可增强血管通透性。因此,该涂层具有多种作用,如促进增强的渗透和滞留以及深层激光穿透。体外和体内实验表明,所提出的GOx@CMPB-HN纳米平台借助基于TME特性的原位增强协同疗法显著抑制肿瘤生长。所开发的纳米平台具有应用于癌症治疗的潜力,并为肿瘤治疗研究开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验