Suppr超能文献

多功能 CuFeO@HA 作为一种 GSH 耗竭纳米平台,用于靶向光热/增强化学动力学协同治疗。

Multifunctional CuFeO@HA as a GSH-depleting nanoplatform for targeted photothermal/enhanced-chemodynamic synergistic therapy.

机构信息

Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.

Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.

出版信息

Colloids Surf B Biointerfaces. 2023 Sep;229:113445. doi: 10.1016/j.colsurfb.2023.113445. Epub 2023 Jul 8.

Abstract

Chemodynamic therapy (CDT), which converts overexpressed hydrogen peroxide (HO) in tumor cells to hydroxyl radicals (•OH) by Fenton reactions, is considered a prospective strategy in anticancer therapy. However, the high level of glutathione (GSH) and poor Fenton catalytic efficiency contribute to the suboptimal efficiency of CDT. Herein, we present a multifunctional nanoplatform (CuFeO@HA) that can induce GSH depletion and combine with photothermal therapy (PTT) to enhance antitumor efficacy. CuFeO@HA nanoparticles could release Cu and Fe after entering tumor cells by targeting hyaluronic acid (HA). Subsequently, Cu and Fe were reduced to Cu and Fe by GSH, where Cu/Fe significantly catalyzed HO to produce a higher level of •OH, and the depletion of GSH disrupted the antioxidant capacity of the tumor. Therefore, depleting GSH substantially enhances the level of •OH in tumor cells. In addition, CuFeO@HA nanoparticles have considerable absorption in the near-infrared (NIR) region, which can stimulate excellent PTT effects. More importantly, the heat generated by PTT can further enhance the Fenton catalysis efficiency. In vitro and in vivo experiments have demonstrated the excellent tumor-killing effect of CuFeO@HA nanoparticles. This strategy overcomes the problem of insufficient CDT efficacy caused by GSH overexpression and poor catalytic efficiency. Moreover, this versatile nanoplatform provides a reference for self-enhanced CDT and PTT/CDT synergistic targeted therapy.

摘要

化学动力学治疗(CDT)通过芬顿反应将肿瘤细胞中过表达的过氧化氢(HO)转化为羟基自由基(•OH),被认为是一种有前途的抗癌治疗策略。然而,高浓度的谷胱甘肽(GSH)和较差的芬顿催化效率导致 CDT 的效率不理想。在此,我们提出了一种多功能纳米平台(CuFeO@HA),它可以通过靶向透明质酸(HA)耗尽 GSH 并与光热治疗(PTT)相结合,以增强抗肿瘤疗效。CuFeO@HA 纳米颗粒可以通过靶向透明质酸(HA)进入肿瘤细胞后释放 Cu 和 Fe。随后,Cu 和 Fe 被 GSH 还原为 Cu 和 Fe,其中 Cu/Fe 显著催化 HO 产生更高水平的•OH,而 GSH 的耗竭破坏了肿瘤的抗氧化能力。因此,耗尽 GSH 可显著提高肿瘤细胞中•OH 的水平。此外,CuFeO@HA 纳米颗粒在近红外(NIR)区域具有相当大的吸收,可刺激优异的 PTT 效果。更重要的是,PTT 产生的热量可以进一步增强芬顿催化效率。体外和体内实验均证明了 CuFeO@HA 纳米颗粒具有优异的肿瘤杀伤效果。该策略克服了由 GSH 过表达和催化效率差引起的 CDT 疗效不足的问题。此外,这种多功能纳米平台为自增强 CDT 和 PTT/CDT 协同靶向治疗提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验