Suppr超能文献

基于 Gumbel-Softmax 的分层脑网络分解神经架构搜索。

Gumbel-Softmax based Neural Architecture Search for Hierarchical Brain Networks Decomposition.

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.

School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.

出版信息

Med Image Anal. 2022 Nov;82:102570. doi: 10.1016/j.media.2022.102570. Epub 2022 Aug 6.

Abstract

Understanding the brain's functional architecture has been an important topic in the neuroimaging field. A variety of brain network modeling methods have been proposed. Recently, deep neural network-based methods have shown a great advantage in modeling the hierarchical and complex functional brain networks (FBNs). However, most of these deep neural networks were handcrafted, making it time-consuming to find the relatively optimal architecture. To address this problem, we propose a novel unsupervised differentiable neural architecture search (NAS) algorithm, named Gumbel-Softmax based Neural Architecture Search (GS-NAS), to automate the architecture design of deep belief network (DBN) for hierarchical FBN decomposition. Specifically, we introduce the Gumbel-Softmax scheme to reframe the discrete architecture sampling procedure during NAS to be continuous. Guided by the reconstruction error minimization procedure, the architecture search can be driven by the intrinsic functional architecture of the brain, thereby revealing the possible hierarchical functional brain organization via DBN structure. The proposed GS-NAS algorithm can simultaneously optimize the number of hidden units for each layer and the network depth. Extensive experiment results on both task and resting-state functional magnetic resonance imaging data have demonstrated the effectiveness and efficiency of the proposed GS-NAS model. The identified hierarchically organized FBNs provide novel insight into understanding human brain function.

摘要

理解大脑的功能架构一直是神经影像学领域的一个重要课题。已经提出了各种大脑网络建模方法。最近,基于深度神经网络的方法在建模层次化和复杂的功能脑网络(FBN)方面显示出了巨大的优势。然而,这些深度神经网络中的大多数都是手工制作的,因此找到相对最优的架构需要花费大量时间。为了解决这个问题,我们提出了一种新颖的无监督可微分神经架构搜索(NAS)算法,名为基于 Gumbel-Softmax 的神经架构搜索(GS-NAS),用于自动化深度置信网络(DBN)的架构设计,以进行层次化 FBN 分解。具体来说,我们引入了 Gumbel-Softmax 方案,将 NAS 期间的离散架构采样过程重新定义为连续过程。在重构误差最小化过程的指导下,架构搜索可以由大脑的内在功能架构驱动,从而通过 DBN 结构揭示可能的层次化功能脑组织。所提出的 GS-NAS 算法可以同时优化每个层的隐藏单元数量和网络深度。在任务和静息状态功能磁共振成像数据上的广泛实验结果证明了所提出的 GS-NAS 模型的有效性和效率。所识别的层次化组织的 FBN 为理解人类大脑功能提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验