Suppr超能文献

基于分层脑网络相互作用的自闭症谱系障碍识别的深度学习方法。

A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks.

机构信息

School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China.

School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.

出版信息

Behav Brain Res. 2023 Aug 24;452:114603. doi: 10.1016/j.bbr.2023.114603. Epub 2023 Jul 27.

Abstract

BACKGROUND

It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied.

METHODS

In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC).

RESULTS

The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %.

CONCLUSIONS

This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.

摘要

背景

最近的研究表明,深度学习模型在理解大脑功能活动方面表现出了出色的功能磁共振成像 (fMRI) 数据表示能力。深度学习模型具有层次结构,可以从 fMRI 中推断出层次化的功能脑网络 (FBN)。然而,层次化 FBN 的应用还很少被研究。

方法

在这项工作中,我们提出了一种层次递归变分自动编码器 (HRVAE),用于对 fMRI 数据进行无监督建模。经过训练的 HRVAE 编码器可以从其三个隐藏层中预测层次化的时间特征,因此可以被视为一种层次化的特征提取器。然后,应用 LASSO(最小绝对收缩和选择算子)回归来估计相应的层次化 FBN。基于每个被试的层次化 FBN,我们构建了一种新的脑疾病识别分类框架,并在自闭症脑影像数据交换 (ABIDE) 数据集上进行了测试,该数据集是一个全球多中心的自闭症谱系障碍 (ASD) 数据库。我们分析了 FBN 的层次结构组织,最后使用层次化 FBN 的重叠作为特征来区分 ASD 和典型发育对照组 (TDC)。

结果

在来自 ABIDE 数据集的 871 名被试的实验结果表明,HRVAE 模型可以有效地提取出包括许多著名的静息态网络 (RSN) 的层次化 FBN。此外,分类结果通过实现高达 82.1%的高精度,提高了现有技术的水平。

结论

本研究提出了一种新的基于 fMRI 数据的深度学习方法,用于 ASD 识别,这可为临床诊断提供有价值的参考。分类结果表明,层次化 FBN 的相互作用与脑疾病有关,这促进了对 FBN 层次结构的理解,并可应用于其他脑疾病分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验