Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China.
The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
Comput Biol Med. 2022 Oct;149:106031. doi: 10.1016/j.compbiomed.2022.106031. Epub 2022 Aug 24.
For spinal surgery, exact knowledge about the shape of individual vertebra is of great importance. However, due to the complex morphological features of human vertebrae and spine, it is challenging to locate, segment automatically, and recognize the morphological features in vertebral images. Significantly, pedicle recognition is more challenging because of the particular structure.
Topological structures such as the Reeb graph could facilitate effective visualization and interactive exploration of feature-rich data. In this paper, we conducted topological data analysis on the 3D vertebra, whereby some principal morphological features of the 3D vertebra are recognized and segmented. First, a scalar field of the 3D vertebra is created in a vertebra coordinate system (VCS). Then, the Reeb graph is adopted for topological data analysis on the scalar field. Morphological features of the 3D vertebra are separated using a cycle-detect-based algorithm in the Reeb graph, and the valid pedicle region is finally generated. Pedicle morphometry is measured for surgical references.
Experiments on the dataset from the CSI 2014 Workshop with our method show that the spinous process and vertebral body are 100% (255/255) recognized, the pedicle is 99.8% (509/510) recognized, the transverse process is 94.1% (240/255) recognized. The parameters incl. chord length and diameter of pedicle morphometry are measured and verify the efficiency of the valid pedicle region deduced from the recognized pedicle.
Topological data analysis is an effective and promising automatic tool for segmenting and recognizing morphological features on the 3D vertebra. The final extracted valid pedicle region and its pedicle morphometry can provide good references for pedicle screw placement.
对于脊柱手术,准确了解个体椎体的形状非常重要。然而,由于人类椎体和脊柱的复杂形态特征,很难定位、自动分割和识别椎体图像中的形态特征。值得注意的是,由于结构的特殊性,椎弓根的识别更加具有挑战性。
Reeb 图等拓扑结构可以促进对富含特征的数据进行有效可视化和交互式探索。在本文中,我们对三维椎体进行了拓扑数据分析,从而识别和分割三维椎体的一些主要形态特征。首先,在椎体坐标系(VCS)中创建三维椎体的标量场。然后,采用 Reeb 图对该标量场进行拓扑数据分析。使用基于循环检测的算法在 Reeb 图中分离三维椎体的形态特征,并最终生成有效的椎弓根区域。进行椎弓根形态测量,为手术提供参考。
使用我们的方法对 CSI 2014 研讨会数据集进行的实验表明,棘突和椎体的识别率为 100%(255/255),椎弓根的识别率为 99.8%(509/510),横突的识别率为 94.1%(240/255)。测量并验证了椎弓根形态测量的弦长和直径等参数,验证了从识别的椎弓根推导出的有效椎弓根区域的效率。
拓扑数据分析是一种有效的、有前途的自动工具,可用于分割和识别三维椎体的形态特征。最终提取的有效椎弓根区域及其椎弓根形态测量可以为椎弓根螺钉放置提供良好的参考。