Suppr超能文献

基于 ResNet 和人工特征的三步训练的集成分类。

Ensemble classification combining ResNet and handcrafted features with three-steps training.

机构信息

Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32 , Milano.

出版信息

Physiol Meas. 2022 Sep 30;43(9). doi: 10.1088/1361-6579/ac8f12.

Abstract

This work presents an ECG classifier for variable leads as a contribution to the Computing in Cardiology Challenge/CinC Challenge 2021. It aims to integrate deep and classic machine learning features into a single model, exploring the proper structure and training procedure.From the initial 88 253 signals, only 84 210 were included. Low quality and unscored recordings were excluded. Three different database subsets of 40 365 recording each were created by dividing in three normal sinus rhythm and sinus bradycardia recordings. Each subset was used to train a different model with shared architecture integrated as an ensemble to provide the final classification through major voting. Models contained a deep branch composed of a modified ResNet with dilation convolutional layers and squeeze and excitation Block that took as input windowed ECG signals. This was concatenated with a wide branch that integrated 20 cardiac rhythm features into a fully connected 3-layered network. Three different training steps were studied: just the deep branch (D), wide integration and training (D+W), and a final fine tuning of the deep branch posterior to wide training (D+W+D).Results obtained in a local test set formed by a stratified 12.5% split of the given full dataset were presented for 2-lead and 12-lead models. The best training method was the 3-step D + W + D procedure obtaining a challenge metric of 0.709 and 0.677 for 12 and 2-lead models respectively.Integration of handcrafted features and deep learning model not only may increase the generalization capacity of the network but also provide a path to add explicit information into the classification decision process. To the best of our knowledge this is the first work studying the training procedure to properly integrate both types of information for ECG signals classification.

摘要

这项工作提出了一种可变导联的 ECG 分类器,作为对计算心脏病学挑战赛/ cinC 挑战赛 2021 的贡献。它旨在将深度学习和经典机器学习特征集成到一个单一的模型中,探索合适的结构和训练过程。从最初的 88253 个信号中,只包括了 84210 个信号。低质量和未评分的记录被排除在外。通过将每个正常窦性节律和窦性心动过缓记录分为三部分,创建了三个不同的数据库子集,每个子集都用于训练一个不同的模型,这些模型共享一个集成的架构,作为一个整体通过主要投票提供最终分类。模型包含一个由具有扩张卷积层的修改后的 ResNet 组成的深度分支,以及挤压和激励块,该块将窗口化的 ECG 信号作为输入。这与一个广泛的分支相结合,该分支将 20 个心脏节律特征集成到一个完全连接的 3 层网络中。研究了三种不同的训练步骤:仅深度分支(D)、广泛集成和训练(D+W),以及在广泛训练后深度分支的最终微调(D+W+D)。在给定的完整数据集的分层 12.5% 分割形成的本地测试集中展示了 2 导联和 12 导联模型的结果。最佳的训练方法是三步 D+W+D 过程,对于 12 导联和 2 导联模型,获得的挑战指标分别为 0.709 和 0.677。手工制作特征和深度学习模型的集成不仅可以提高网络的泛化能力,还可以为将显式信息添加到分类决策过程中提供一种途径。据我们所知,这是第一项研究训练过程的工作,该过程旨在正确地将这两种类型的信息集成到 ECG 信号分类中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验