Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
J Biol Chem. 2022 Oct;298(10):102441. doi: 10.1016/j.jbc.2022.102441. Epub 2022 Aug 31.
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging β-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane β-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane β-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric β-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional β-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.
霍乱弧菌细胞溶素(VCC)是一种有效的膜损伤β桶孔形成毒素。VCC 单体在与靶膜结合后,首先组装成寡聚前孔中间体,然后转化为跨膜β桶孔。VCC 具有特定的孔形成模体,在寡聚孔形成过程中,该模体插入膜中并产生跨膜β桶支架。目前仍然不清楚孔形成模体的分子结构如何调节 VCC 孔形成机制。在这里,我们表明,一个特定的孔形成模体残基 E289 在 VCC 的孔形成机制中起着关键的调节作用。我们发现 E289A 的突变极大地损害了孔形成活性,而不影响毒素单体的结构完整性和膜结合潜力。尽管我们的单颗粒冷冻电镜分析显示 E289A-VCC 在膜中形成了类似于 WT 的寡聚β桶孔,但我们证明该突变在孔形成能力方面表现出严重延迟的动力学,可以通过升高温度条件来挽救。我们发现 E289A-VCC 的孔形成效力似乎比 WT 毒素更依赖于温度。我们的结果表明,E289A 突变将膜结合的毒素分子困在前孔样中间体状态,由于能量障碍,该中间体状态无法转化为功能性β桶孔,从而突出了该残基在 VCC 孔形成机制中的重要性。