Das Sarbashis, Das Saptarshi
Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA.
Adv Mater. 2022 Oct;34(43):e2203753. doi: 10.1002/adma.202203753. Epub 2022 Sep 27.
Energy, area, and bandwidth efficient communication primitives are essential to sustain the rapid increase in connectivity among internet-of-things (IoT) edge devices. While IoT edge-sensing, edge-computing, and edge-storage have witnessed innovation in materials and devices, IoT edge communication is yet to experience such transformation. The aging silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology continues to remain the mainstay of communication devices where they are used to implement amplitude, frequency, and phase shift keying (amplitude-shift keying [ASK]/frequency-shift keying [FSK]/phase-shift keying [PSK]). Keying allows digital information to be communicated over a radio channel. While CMOS-based keying devices have evolved over the years, their hardware footprint and energy consumption are major concerns for resource constrained IoT communication. Furthermore, separate circuit designs and hardware elements are needed for each keying scheme and achieving multibit modulation to improve bandwidth efficiency remains a challenge. Here, a reconfigurable modulator is introduced that exploits unique ambipolar transport and programmable Dirac voltage in ultrathin MoTe field-effect transistors to achieve ASK, FSK, and PSK modulation. Furthermore, by integrating two programmed MoTe field-effect transistors, multibit data modulation is demonstrated, which improves the bandwidth efficiency by 200%. Finally, a frequency quadrupler is also realized exploiting the unique "double-well" transfer characteristic.
能量、面积和带宽高效的通信原语对于维持物联网(IoT)边缘设备之间连接性的快速增长至关重要。虽然物联网边缘传感、边缘计算和边缘存储在材料和设备方面已有创新,但物联网边缘通信尚未经历此类变革。基于硅(Si)的老化互补金属氧化物半导体(CMOS)技术仍然是通信设备的主流,这些设备用于实现幅度、频率和相移键控(幅度移键控[ASK]/频移键控[FSK]/相移键控[PSK])。键控允许数字信息通过无线信道进行通信。虽然基于CMOS的键控设备多年来不断发展,但其硬件占用面积和能耗是资源受限的物联网通信的主要问题。此外,每种键控方案都需要单独的电路设计和硬件元件,实现多位调制以提高带宽仍然是一项挑战。在此,引入了一种可重构调制器,该调制器利用超薄MoTe场效应晶体管中独特的双极传输和可编程狄拉克电压来实现ASK、FSK和PSK调制。此外,通过集成两个编程的MoTe场效应晶体管,展示了多位数据调制,其将带宽效率提高了200%。最后,利用独特的“双阱”传输特性还实现了一个四倍频器。