Suppr超能文献

可解释的机器学习提高了美国切萨皮克湾流域生物流条件预测模型的可解释性。

Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA.

机构信息

U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, West Virginia, USA 25430.

Interstate Commission on the Potomac River Basin (ICPRB), 30 West Gude Drive, Suite 450, Rockville, MD, 20850, USA.

出版信息

J Environ Manage. 2022 Nov 15;322:116068. doi: 10.1016/j.jenvman.2022.116068. Epub 2022 Sep 1.

Abstract

Anthropogenic alterations have resulted in widespread degradation of stream conditions. To aid in stream restoration and management, baseline estimates of conditions and improved explanation of factors driving their degradation are needed. We used random forests to model biological conditions using a benthic macroinvertebrate index of biotic integrity for small, non-tidal streams (upstream area ≤200 km) in the Chesapeake Bay watershed (CBW) of the mid-Atlantic coast of North America. We utilized several global and local model interpretation tools to improve average and site-specific model inferences, respectively. The model was used to predict condition for 95,867 individual catchments for eight periods (2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019). Predicted conditions were classified as Poor, FairGood, or Uncertain to align with management needs and individual reach lengths and catchment areas were summed by condition class for the CBW for each period. Global permutation and local Shapley importance values indicated percent of forest, development, and agriculture in upstream catchments had strong impacts on predictions. Development and agriculture negatively influenced stream condition for model average (partial dependence [PD] and accumulated local effect [ALE] plots) and local (individual condition expectation and Shapley value plots) levels. Friedman's H-statistic indicated large overall interactions for these three land covers, and bivariate global plots (PD and ALE) supported interactions among agriculture and development. Total stream length and catchment area predicted in FairGood conditions decreased then increased over the 19-years (length/area: 66.6/65.4% in 2001, 66.3/65.2% in 2011, and 66.6/65.4% in 2019). Examination of individual catchment predictions between 2001 and 2019 showed those predicted to have the largest decreases in condition had large increases in development; whereas catchments predicted to exhibit the largest increases in condition showed moderate increases in forest cover. Use of global and local interpretative methods together with watershed-wide and individual catchment predictions support conservation practitioners that need to identify widespread and localized patterns, especially acknowledging that management actions typically take place at individual-reach scales.

摘要

人为因素的改变导致了溪流状况的广泛恶化。为了帮助溪流的恢复和管理,需要对条件进行基线估计,并更好地解释导致其退化的因素。我们使用随机森林模型,利用生物完整性的底栖大型无脊椎动物指数来对切萨皮克湾流域(CBW)的小非潮汐溪流(上游面积≤200 平方公里)进行建模,该模型位于北美洲大西洋中部海岸。我们利用了几种全球和局部模型解释工具,分别提高了平均和特定地点模型的推断能力。该模型用于预测 8 个时期(2001 年、2004 年、2006 年、2008 年、2011 年、2013 年、2016 年和 2019 年)的 95867 个单独流域的条件。预测的条件被归类为差、中、好,以符合管理需求,并根据条件类别对每个时期的 CBW 中每个流域的长度和流域面积进行求和。全局置换和局部 Shapley 重要性值表明,上游流域的森林、发展和农业百分比对预测有很强的影响。发展和农业对模型平均值(偏依赖[PD]和累积局部效应[ALE]图)和局部值(个别条件期望和 Shapley 值图)有负面影响。弗里德曼 H 统计量表明,这三种土地覆盖物之间存在很大的总体相互作用,二元全局图(PD 和 ALE)支持农业和发展之间的相互作用。在 19 年的时间里,中好条件下的总溪流长度和流域面积预测先减少后增加(长度/面积:2001 年为 66.6/65.4%,2011 年为 66.3/65.2%,2019 年为 66.6/65.4%)。对 2001 年至 2019 年期间个别流域预测的检查表明,那些预测条件下降最大的流域,其发展速度有较大的增加;而那些预测条件增长最大的流域,其森林覆盖率则适度增加。使用全局和局部解释性方法,以及流域范围和个别流域预测,为需要识别广泛和局部模式的保护工作者提供了支持,特别是要承认管理行动通常发生在个别流域尺度上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验