Department of Biology, Johannes Gutenberg University, Mainz, Germany.
Stowers Institute for Medical Research, Kansas City, MO, USA.
EMBO J. 2022 Oct 17;41(20):e110458. doi: 10.15252/embj.2021110458. Epub 2022 Sep 5.
The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high-throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1-Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species-specific upper limits on telomere length.
保守的 Rap1 蛋白是庇护体复合物的一部分,在染色体末端保护和端粒长度调节中发挥着关键作用。先前的研究已经解决了裂殖酵母 Rap1 如何有助于端粒长度维持的问题,但该蛋白抑制末端融合的机制仍然难以捉摸。在这里,我们使用诱变筛选结合高通量测序来鉴定 Rap1 中的几个氨基酸位置,这些位置在末端保护中起着关键作用。有趣的是,这些位点的突变使细胞在条件性方式下易发生基因组不稳定性,从而使较长的端粒更容易发生末端融合,而在正常长度范围内的端粒则得到充分保护。长端粒的保护部分依赖于 Rap1-Bqt4 相互作用介导的核膜附着。我们的数据表明,长端粒代表了对基因组完整性维持的挑战,从而为端粒长度的物种特异性上限提供了一种解释。