Suppr超能文献

臂丛神经的磁共振神经成像:分步指南

Magnetic resonance tractography of the brachial plexus: step-by-step.

作者信息

Ibrahim Ibrahim, Škoch Antonín, Herynek Vít, Humhej Ivan, Beran Jan, Flusserová Vlasta, Rolencová Eva, Juhaňáková Martina, Brzák Michal, Nagy Markéta, Tintěra Jaroslav

机构信息

Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.

Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic.

出版信息

Quant Imaging Med Surg. 2022 Sep;12(9):4488-4501. doi: 10.21037/qims-22-30.

Abstract

BACKGROUND

Magnetic resonance (MR) tractography of the brachial plexus (BP) is challenging due to different factors such as motion artifacts, pulsation artifacts, signal-to-noise ratio, spatial resolution; eddy currents induced geometric distortions, sequence parameters and choice of used coils. Notably challenging is the separation of the peripheral nerve bundles and skeletal muscles as both structures have similar fractional anisotropy values. We proposed an algorithm for robust visualization and assessment of BP root bundles using the segmentation of the spinal cord (SSC, C4-T1) as seed points for the initial starting area for the fibre tracking algorithm.

METHODS

Twenty-seven healthy volunteers and four patients with root avulsions underwent magnetic resonance imaging (MRI) examinations on a 3T MR scanner with optimized measurement protocols for diffusion-weighted images and coronal T2 weighted 3D short-term inversion recovery sampling perfection with application optimized contrast using varying flip angle evaluation sequences used for BP fibre reconstruction and MR neurography (MRN). The fibre bundles reconstruction was optimized in terms of eliminating the skeletal muscle fibres contamination using the SSC and the tracking threshold of the normalized quantitative anisotropy (NQA) on reconstruction of the BP. In our study, the NQA parameter has been used for fiber tracking instead of fractional anisotropy (FA). The diffusion data were processed in individual C4-T1 root bundles using the generalized q-sampling imaging (GQI) algorithm. Calculated diffusion parameters were statistically analysed using the two-sample -test. The MRN was performed in MedINRIA and post-processed using the maximum intensity projection (MIP) method to demonstrate BP root bundles in multiple planes.

RESULTS

In control subjects, no significant effect of laterality in diffusion parameters was found (P>0.05) in the BP. In the central part of the BP, a significant difference between control subjects and patients at P=0.02 was found in the NQA values. Other diffusion parameters were not significantly different.

CONCLUSIONS

Using NQA instead of FA in the proposed algorithm allowed for a better separation of muscle and root nerve bundles. The presented algorithm yields a high quality reconstruction of the BP bundles that may be helpful both in research and clinical practice.

摘要

背景

由于多种因素,如运动伪影、搏动伪影、信噪比、空间分辨率、涡流引起的几何畸变、序列参数以及所用线圈的选择等,臂丛神经(BP)的磁共振(MR)纤维束成像具有挑战性。尤其具有挑战性的是外周神经束与骨骼肌的区分,因为这两种结构具有相似的各向异性分数值。我们提出了一种算法,通过将脊髓(SSC,C4 - T1)分割作为纤维追踪算法初始起始区域的种子点,来实现对BP神经根束的稳健可视化和评估。

方法

27名健康志愿者和4名神经根撕脱患者在3T MR扫描仪上接受了磁共振成像(MRI)检查,采用了针对扩散加权图像和冠状面T2加权3D短期反转恢复采样完美序列的优化测量方案,并应用了可变翻转角评估序列进行BP纤维重建和磁共振神经造影(MRN)。在消除骨骼肌纤维污染方面,利用SSC以及BP重建时归一化定量各向异性(NQA)的追踪阈值对纤维束重建进行了优化。在我们的研究中,使用NQA参数而非各向异性分数(FA)进行纤维追踪。使用广义q采样成像(GQI)算法对个体C4 - T1神经根束中的扩散数据进行处理。使用双样本t检验对计算出的扩散参数进行统计分析。在MedINRIA中进行MRN,并使用最大强度投影(MIP)方法进行后处理,以在多个平面上显示BP神经根束。

结果

在对照组中,BP的扩散参数未发现明显的侧别效应(P>0.05)。在BP的中央部分,对照组与患者之间的NQA值在P = 0.02时有显著差异。其他扩散参数无显著差异。

结论

在所提出的算法中使用NQA而非FA能够更好地分离肌肉和神经根束。所呈现的算法能够高质量地重建BP束,这在研究和临床实践中可能都有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/9403600/03a878fc4e77/qims-12-09-4488-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验