Lalli Matthew, Yen Allen, Thopte Urvashi, Dong Fengping, Moudgil Arnav, Chen Xuhua, Milbrandt Jeffrey, Dougherty Joseph D, Mitra Robi D
Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.
Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.
NAR Genom Bioinform. 2022 Aug 31;4(3):lqac061. doi: 10.1093/nargab/lqac061. eCollection 2022 Sep.
Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.
使用自我报告转座子的分子标签技术能够通过RNA测序识别DNA-蛋白质相互作用。尽管功能强大,但目前在细胞群体的批量实验中实施分子标签技术在技术上很繁琐,并且需要多次重复实验才能识别同一基因组位点的独立插入。在此,我们通过在分子标签本身中引入DNA条形码,大幅降低了细胞群体批量实验中分子标签实验的成本和劳动力需求。在逆转录过程中加入的另一个条形码能够以一种简便且经济的方案同时进行转录组测量。我们证明,带有条形码的自我报告转座子能够识别在细胞命运决定中起重要作用的四种基本螺旋-环-螺旋转录因子的结合位点:ASCL1、MYOD1、NEUROD2和NGN1。此外,在转录因子过表达期间同时进行分子标签实验和转录谱分析,确定了其中两种因子的结合位点和基因表达变化。最后,我们证明了带有条形码的分子标签能够记录小鼠大脑中的结合情况。总之,通过带有条形码的自我报告转座子分子标签和转录组进行基于RNA的转录因子结合位点和基因表达识别,是推断细胞群体中基因调控网络的一种高效且强大的方法。