Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP), Tübingen, Germany.
Methods Mol Biol. 2022;2478:25-35. doi: 10.1007/978-1-0716-2229-2_3.
Force spectroscopy on single molecular machines generating piconewton forces is often performed using optical tweezers. Since trapping forces scale with the particle volume, piconewton-force measurements so far required micron-sized probes practically limiting the spatiotemporal resolution. Here, we have overcome this limit by developing high-refractive index germanium nanospheres as ultraresolution trapping probes. With a refractive index of 4.4, their trapping efficiency and maximum force per power is more than 10-fold higher compared to silica spheres of equal size. Therefore, the use of germanium allows piconewton-force measurements with nanometer sized probes. Using 70-nm-diameter germanium nanospheres as trappable optical probes (GeNTOPs), we could show that kinesin-1 walks with 4-nm-center-of-mass steps. In the long-term, the application of these novel high-precision GeNTOPs will provide new insight into the working mechanism of molecular machines and are promising candidates for other applications in microscopy, optoelectronics, and nanophotonics.
使用光学镊子对产生皮牛顿力的单个分子机器进行力谱学测量是一种常见的做法。由于捕获力与粒子体积成正比,因此迄今为止,皮牛顿力的测量需要使用微米级的探针,这实际上限制了时空分辨率。在这里,我们通过开发高折射率的锗纳米球作为超高分辨率捕获探针克服了这一限制。由于其折射率为 4.4,与同等尺寸的二氧化硅球相比,它们的捕获效率和每单位功率的最大力提高了 10 倍以上。因此,使用锗可以用纳米级探针进行皮牛顿力的测量。我们使用 70nm 直径的锗纳米球作为可捕获的光学探针(GeNTOPs),证明了驱动蛋白-1 以 4nm 的质心步长行走。从长远来看,这些新型高精度 GeNTOPs 的应用将为分子机器的工作机制提供新的见解,并有望成为显微镜、光电学和纳米光子学等其他应用的候选方案。