Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP), Auf der Morgenstelle 32, 72076 Tübingen, Germany.
Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd9944.
Kinesin motors are essential for the transport of cellular cargo along microtubules. How the motors step, detach, and cooperate with each other is still unclear. To dissect the molecular motion of kinesin-1, we developed germanium nanospheres as ultraresolution optical trapping probes. We found that single motors took 4-nanometer center-of-mass steps. Furthermore, kinesin-1 never detached from microtubules under hindering load conditions. Instead, it slipped on microtubules in microsecond-long, 8-nanometer steps and remained in this slip state before detaching or reengaging in directed motion. Unexpectedly, reengagement and thus rescue of directed motion was more frequent. Our observations broaden our knowledge on the mechanochemical cycle and slip state of kinesin. This state and rescue need to be accounted for to understand long-range transport by teams of motors.
驱动蛋白马达对于沿微管运输细胞货物至关重要。然而,驱动蛋白马达如何进行步移、脱离以及相互协作仍然不清楚。为了解析驱动蛋白-1 的分子运动,我们开发了锗纳米球作为超高分辨率光镊探测探针。我们发现单个驱动蛋白以 4 纳米的质心步移进行运动。此外,在阻碍负载条件下,驱动蛋白-1 从未从微管上脱离。相反,它在微秒长的 8 纳米步移中在微管上滑动,并在脱离或重新进入定向运动之前保持在这种滑动状态。出乎意料的是,重新结合从而恢复定向运动的情况更为频繁。我们的观察结果拓宽了我们对驱动蛋白的机械化学循环和滑动状态的认识。为了理解由多个马达组成的团队进行的长程运输,需要考虑这种状态及其恢复。