LENS, European Laboratory for Non-Linear Spectroscopy, Florence, Italy.
National Institute of Optics, National Research Council (INO-CNR), Florence, Italy.
Methods Mol Biol. 2022;2478:513-557. doi: 10.1007/978-1-0716-2229-2_19.
Interactions between biological molecules occur on very different time scales, from the minutes of strong protein-protein bonds, down to below the millisecond duration of rapid biomolecular interactions. Conformational changes occurring on sub-ms time scales and their mechanical force dependence underlie the functioning of enzymes (e.g., motor proteins) that are fundamental for life. However, such rapid interactions are beyond the temporal resolution of most single-molecule methods. We developed ultrafast force-clamp spectroscopy (UFFCS), a single-molecule technique based on laser tweezers that allows us to investigate early and very fast dynamics of a variety of enzymes and their regulation by mechanical load. The technique was developed to investigate the rapid interactions between skeletal muscle myosin and actin, and then applied to the study of different biological systems, from cardiac myosin to processive myosin V, microtubule-binding proteins, transcription factors, and mechanotransducer proteins. Here, we describe two different implementations of UFFCS instrumentation and protocols using either acousto- or electro-optic laser beam deflectors, and their application to the study of processive and non-processive motor proteins.
生物分子之间的相互作用发生在非常不同的时间尺度上,从几分钟的强蛋白质-蛋白质键,到快速生物分子相互作用的毫秒以下持续时间。亚毫秒时间尺度上发生的构象变化及其对机械力的依赖性是酶(例如,运动蛋白)发挥作用的基础,而酶对于生命是至关重要的。然而,这种快速相互作用超出了大多数单分子方法的时间分辨率。我们开发了超快力钳光谱学(UFFCS),这是一种基于激光镊子的单分子技术,使我们能够研究各种酶的早期和非常快速的动力学及其对机械负载的调节。该技术最初用于研究骨骼肌肌球蛋白和肌动蛋白之间的快速相互作用,然后应用于不同生物系统的研究,从心肌球蛋白到进行性肌球蛋白 V、微管结合蛋白、转录因子和机械转导蛋白。在这里,我们描述了两种不同的 UFFCS 仪器和协议的实现,使用声或电光激光束偏转器,并将其应用于进行性和非进行性运动蛋白的研究。