Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA.
Methods Mol Biol. 2022;2478:609-650. doi: 10.1007/978-1-0716-2229-2_22.
Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.
光学捕获在解析产生力的细胞骨架蛋白的易位机制方面发挥了重要作用。然而,对没有运动能力的微管(MTs)和 MT 相关蛋白(MAPs)之间的动态相互作用的研究还比较滞后。研究能够沿着 MT 壁扩散的 MAP 的运动性对于光学捕获测定来说是一个特殊的挑战,因为热驱动的运动依赖于弱且高度瞬时的相互作用。三珠,超快力钳(UFFC)光谱学具有以亚毫秒时间分辨率和亚纳米空间精度解析不同 MAP 的静态和扩散易位的潜力。在本报告中,我们介绍了实施 UFFC 的详细程序,包括光学仪器和反馈控制的设置、基台珠的固定和功能化,以及 MT 哑铃的制备。使用 AMP-PNP 存在的 Kinesin-7 马达 CENP-E 生成了强静态相互作用的示例结果。UFFC 测定中 MAP-MT 相互作用的时间分辨率受到 MT 哑铃弛豫时间的限制,这比使用肌动蛋白丝进行类似实验报告的时间分辨率长得多。然而,UFFC 为在拖曳力下沿 MT 滑行的 MAP 的定量研究提供了独特的机会,如使用动粒相关的 Ska 复合物所说明的那样。