Suppr超能文献

微管结合蛋白的超快力钳光谱学研究。

Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins.

机构信息

Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA.

出版信息

Methods Mol Biol. 2022;2478:609-650. doi: 10.1007/978-1-0716-2229-2_22.

Abstract

Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.

摘要

光学捕获在解析产生力的细胞骨架蛋白的易位机制方面发挥了重要作用。然而,对没有运动能力的微管(MTs)和 MT 相关蛋白(MAPs)之间的动态相互作用的研究还比较滞后。研究能够沿着 MT 壁扩散的 MAP 的运动性对于光学捕获测定来说是一个特殊的挑战,因为热驱动的运动依赖于弱且高度瞬时的相互作用。三珠,超快力钳(UFFC)光谱学具有以亚毫秒时间分辨率和亚纳米空间精度解析不同 MAP 的静态和扩散易位的潜力。在本报告中,我们介绍了实施 UFFC 的详细程序,包括光学仪器和反馈控制的设置、基台珠的固定和功能化,以及 MT 哑铃的制备。使用 AMP-PNP 存在的 Kinesin-7 马达 CENP-E 生成了强静态相互作用的示例结果。UFFC 测定中 MAP-MT 相互作用的时间分辨率受到 MT 哑铃弛豫时间的限制,这比使用肌动蛋白丝进行类似实验报告的时间分辨率长得多。然而,UFFC 为在拖曳力下沿 MT 滑行的 MAP 的定量研究提供了独特的机会,如使用动粒相关的 Ska 复合物所说明的那样。

相似文献

6
kinesin-8 stabilizes the kinetochore-microtubule interaction.驱动蛋白-8 稳定动粒-微管相互作用。
J Cell Biol. 2019 Feb 4;218(2):474-488. doi: 10.1083/jcb.201807077. Epub 2018 Dec 11.

本文引用的文献

5
Three Beads Are Better Than One.三颗珠子胜过一颗。
Biophys J. 2020 Jan 7;118(1):1-3. doi: 10.1016/j.bpj.2019.12.001. Epub 2019 Dec 12.
8
Microtubule-Associated Proteins: Structuring the Cytoskeleton.微管相关蛋白:构建细胞骨架。
Trends Cell Biol. 2019 Oct;29(10):804-819. doi: 10.1016/j.tcb.2019.07.004. Epub 2019 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验