Suppr超能文献

多组学揭示了长距离易位在调控异源六倍体小麦(Triticum aestivum)镉抗性和籽粒积累中的重要作用。

Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum).

机构信息

School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.

Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

出版信息

J Exp Bot. 2022 Dec 8;73(22):7516-7537. doi: 10.1093/jxb/erac364.

Abstract

Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.

摘要

镉(Cd)是一种剧毒重金属,它很容易通过根部进入小麦等谷物,并转移到茎和籽粒中,从而对人类健康构成高风险。然而,异源六倍体小麦庞大而复杂的基因组使得理解其对镉的抗性和积累机制变得具有挑战性。在这项研究中,我们从 442 个品系中选择了一个镉抗性品种“ZM1860”和一个镉敏感品种“ZM32”,这两个品种在植株抗性和籽粒积累方面表现出显著差异。我们对形态生理特性、离子组学和植物激素谱、基因组变异、转录组图谱和基因功能进行了综合比较分析,以确定这些差异的机制。在镉毒性下,“ZM1860”表现优于“ZM32”,后者叶片黄化更严重,根系结构较差,活性氧积累更多,植物激素稳态紊乱。离子组学表明,“ZM32”的根到茎的镉转运系数更高,并且在籽粒中积累的镉多于“ZM1860”。全基因组重测序(WGS)和转录组测序鉴定了许多涉及两种基因型非生物胁迫响应和离子转运的 DNA 变体和差异表达基因。离子组学、转录组学和功能基因分析相结合,鉴定了定位于质膜的重金属 ATP 酶 TaHMA2b-7A 作为一个关键的 Cd 外排泵,调节小麦中的长距离 Cd 转运。WGS 和基于 PCR 的序列多态性分析揭示了 TaHMA2b-7A 启动子区域的一个 25-bp InDel 位点,这可能是导致差异表达的原因。我们的多组学方法因此确定了一个核心转运蛋白,该蛋白参与了小麦中的长距离 Cd 转运,它可能为提高植物对 Cd 的抗性和减少小麦和其他谷类作物中的籽粒 Cd 积累提供了一个优良的遗传资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验