College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
Sci Rep. 2019 Jan 29;9(1):870. doi: 10.1038/s41598-018-37352-6.
Soil microelement deficiency and heavy metal contamination affects plant growth and development, but improving trace element uptake and reducing heavy metal accumulation by genetic breeding can help alleviate this. Cell number regulator 2 (TaCNR2) from common wheat (Triticum aestivum) are similar to plant cadmium resistance proteins, involved with regulating heavy metal translocation. Our aim was to understand the effect of TaCNR2 on heavy metal tolerance and translocation. In this study, real-time quantitative PCR indicated TaCNR2 expression in the wheat seedlings increased under Cd, Zn and Mn treatment. Overexpression of TaCNR2 in Arabidopsis and rice enhanced its stress tolerance to Cd, Zn and Mn, and overexpression in rice improved Cd, Zn and Mn translocation from roots to shoots. The grain husks in overexpressed rice had higher Cd, Zn and Mn concentrations, but the brown rice accumulated less Cd but higher Mn than wild rice. The results showed that TaCNR2 can transport heavy metal ions. Thus, this study provides a novel gene resource for increasing nutrition uptake and reducing toxic metal accumulation in crops.
土壤微量元素缺乏和重金属污染会影响植物的生长和发育,但通过遗传育种提高微量元素的吸收和减少重金属的积累可以帮助缓解这一问题。普通小麦中的细胞数量调节剂 2(TaCNR2)与植物镉抗性蛋白相似,参与调节重金属的转运。我们的目的是了解 TaCNR2 对重金属耐受性和转运的影响。在这项研究中,实时定量 PCR 表明 TaCNR2 在小麦幼苗中表达在 Cd、Zn 和 Mn 处理下增加。在拟南芥和水稻中过表达 TaCNR2 增强了其对 Cd、Zn 和 Mn 的胁迫耐受性,并且在水稻中过表达改善了 Cd、Zn 和 Mn 从根部向地上部的转运。过表达水稻的稻谷外壳中 Cd、Zn 和 Mn 的浓度更高,但糙米中 Cd 的积累减少,而 Mn 的积累高于野生稻。结果表明,TaCNR2 可以转运重金属离子。因此,这项研究为增加作物对营养物质的吸收和减少有毒金属的积累提供了一种新的基因资源。