Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
Freie Universität Berlin, Königin-Luise-Strasse 1 - 3, 14195 Berlin, Germany.
J Insect Physiol. 2022 Oct;142:104439. doi: 10.1016/j.jinsphys.2022.104439. Epub 2022 Sep 5.
Honeybees of the same colony combine a near-homogeneous genetic background with a high level of phenotypic plasticity, making them ideal models for functional lipidomics. The only external lipid source of the colony is pollen, a diet rich in polyunsaturated fatty acids (PUFA). It has been suggested that differences in exposure to pollen-derived PUFA could partly explain differences in longevity between honeybee castes. We here investigated whether the membrane composition of honeybees plays roles in the physiological adaptation to tasks of individuals within the colony. Membranes of cell heaters, a group of workers producing heat from their flight muscles to uphold brood nest temperature, were compared to those of different types of non-heaters. We found that the lipidomic profiles of these groups fall into clearly different "lipotypes", characterized by chain length and saturation of phospholipid-bound fatty acyl residues. The nutritional exposure to PUFA during early adult life and pupal development at the lower edge of the natural range of brood nest temperature both suppressed the expression of the cell heater-"lipotype". Because cardiolipins (CL) are the lipid class most clearly differentiating honeybee phenotypes, and CL plays central roles in mitochondrial function, dysfunction and aging, our findings could help to understand these processes in other animals and humans. Taken together, the lipidome analysis of different life stages of workers, fertile queens, and drones lead to the hypothesis that honeybee "lipotypes" might represent adaptations to different energetic profiles and the likelihood of exposure to low temperatures.
同一蜂巢中的蜜蜂具有近乎同质的遗传背景和高水平的表型可塑性,使其成为功能脂质组学的理想模型。蜂巢的唯一外部脂质来源是花粉,花粉富含多不饱和脂肪酸(PUFA)。有人认为,对花粉来源的 PUFA 的暴露差异可能部分解释了蜜蜂不同等级之间寿命的差异。我们在这里研究了蜜蜂膜的组成是否在个体对蜂巢内任务的生理适应中起作用。与不同类型的非加热器相比,我们比较了产热器(一组通过飞行肌肉产生热量以维持巢温的工蜂)的膜和不同类型的非加热器的膜。我们发现,这些群体的脂质组学图谱分为明显不同的“脂质型”,其特征是磷脂结合的脂肪酸残基的链长和饱和度。在自然巢温下限的早期成年期和蛹期对 PUFA 的营养暴露均抑制了细胞加热器-“脂质型”的表达。由于心磷脂(CL)是最能区分蜜蜂表型的脂质类,并且 CL 在线粒体功能、功能障碍和衰老中发挥核心作用,因此我们的发现可能有助于理解其他动物和人类的这些过程。总之,对不同生命阶段的工蜂、有生育能力的蜂王和雄蜂的脂质组分析导致了这样的假设,即蜜蜂的“脂质型”可能代表了对不同能量谱和暴露于低温的可能性的适应。