Suppr超能文献

MeCP2 缺乏会损害与运动学习相关的运动皮层回路灵活性。

MeCP2 deficiency impairs motor cortical circuit flexibility associated with motor learning.

机构信息

Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.

Department of Psychiatry, Stanford University, Palo Alto, CA, 94305, USA.

出版信息

Mol Brain. 2022 Sep 5;15(1):76. doi: 10.1186/s13041-022-00965-0.

Abstract

Loss of function mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2) cause Rett syndrome (RTT), a postnatal neurological disorder. The loss of motor function is an important clinical feature of RTT that manifests early during the course of the disease. RTT mouse models with mutations in the murine orthologous Mecp2 gene replicate many human phenotypes, including progressive motor impairments. However, relatively little is known about the changes in circuit function during the progression of motor deficit in this model. As the motor cortex is the key node in the motor system for the control of voluntary movement, we measured firing activity in populations of motor cortical neurons during locomotion on a motorized wheel-treadmill. Different populations of neurons intermingled in the motor cortex signal different aspects of the locomotor state of the animal. The proportion of running selective neurons whose activity positively correlates with locomotion speed gradually decreases with weekly training in wild-type mice, but not in Mecp2-null mice. The fraction of rest-selective neurons whose activity negatively correlates with locomotion speed does not change with training in wild-type mice, but is higher and increases with the progression of locomotion deficit in mutant mice. The synchronization of population activity that occurs in WT mice with training did not occur in Mecp2-null mice, a phenotype most clear during locomotion and observable across all functional cell types. Our results could represent circuit-level biomarkers for motor regression in Rett syndrome.

摘要

X 连锁基因编码甲基化 CpG 结合蛋白 2(MECP2)的功能丧失突变导致雷特综合征(RTT),这是一种产后神经障碍。运动功能丧失是 RTT 的一个重要临床特征,在疾病过程中很早就会出现。在与 Mecp2 基因的鼠同源突变的 RTT 小鼠模型中,许多人类表型得到了复制,包括进行性运动障碍。然而,关于在这种模型中运动缺陷进展过程中电路功能的变化,人们知之甚少。由于运动皮层是运动系统中控制自主运动的关键节点,我们在电动滚轮跑步机上测量了运动皮层神经元群体在运动过程中的放电活动。运动皮层中的不同神经元群体交织在一起,共同反映了动物运动状态的不同方面。在野生型小鼠中,随着每周的训练,与运动速度呈正相关的跑步选择性神经元的比例逐渐降低,但在 Mecp2 基因缺失小鼠中没有降低。与运动速度呈负相关的休息选择性神经元的比例在野生型小鼠中随训练而没有变化,但在突变型小鼠中,随着运动缺陷的进展,其比例升高并增加。在有训练的 WT 小鼠中发生的群体活动同步现象在 Mecp2 基因缺失小鼠中没有发生,这一表型在运动期间最为明显,并且可以在所有功能细胞类型中观察到。我们的研究结果可能代表了 Rett 综合征运动功能倒退的电路水平生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cac/9446698/31c74ea9f9bb/13041_2022_965_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验