Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, 85748, Garching, Germany.
Center for Functional Protein Assemblies, Technische Universität München, 85748, Garching, Germany.
Nat Commun. 2022 Sep 5;13(1):5219. doi: 10.1038/s41467-022-32806-y.
The development dynamics and self-organization of glandular branched epithelia is of utmost importance for our understanding of diverse processes ranging from normal tissue growth to the growth of cancerous tissues. Using single primary murine pancreatic ductal adenocarcinoma (PDAC) cells embedded in a collagen matrix and adapted media supplementation, we generate organoids that self-organize into highly branched structures displaying a seamless lumen connecting terminal end buds, replicating in vivo PDAC architecture. We identify distinct morphogenesis phases, each characterized by a unique pattern of cell invasion, matrix deformation, protein expression, and respective molecular dependencies. We propose a minimal theoretical model of a branching and proliferating tissue, capturing the dynamics of the first phases. Observing the interaction of morphogenesis, mechanical environment and gene expression in vitro sets a benchmark for the understanding of self-organization processes governing complex organoid structure formation processes and branching morphogenesis.
腺状分支上皮的发育动力学和自组织对于我们理解从正常组织生长到癌组织生长等各种过程至关重要。我们使用单个原代小鼠胰腺导管腺癌(PDAC)细胞嵌入胶原基质和适应的培养基补充,生成能够自组织成高度分支结构的类器官,这些结构显示出连接末端芽的无缝腔,复制体内 PDAC 结构。我们确定了不同的形态发生阶段,每个阶段的特征都是独特的细胞入侵模式、基质变形、蛋白质表达和各自的分子依赖性。我们提出了一个分支和增殖组织的最小理论模型,捕获了前几个阶段的动力学。在体外观察形态发生、机械环境和基因表达的相互作用,为理解控制复杂类器官结构形成过程和分支形态发生的自组织过程设定了基准。