Kurzbach Sophie C, Carvajal-Heckele Violetta, Teshima Tetsuhiko F, Reichert Maximilian, Bausch Andreas R
TUM School of Natural Sciences, Department of Bioscience, Heinz Nixdorf Chair in Biophysical Engineering of Living Matter, Technical University of Munich, 85748 Garching, Germany.
Center for Protein Assemblies (CPA), Technical University of Munich, 85747 Garching, Germany.
Lab Chip. 2025 Jun 19. doi: 10.1039/d5lc00203f.
Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive and heterogeneous malignancy, posing challenges for reproducible modeling and functional phenotypic analysis. To address these limitations, we developed a standardized 3D patternoid platform using collagen-based microcavity arrays to enhance organoid formation consistency and quantify subtype-specific invasion mechanisms. We utilized murine primary PDAC cells stratified by epithelial-mesenchymal transition (EMT) into three subtypes: epithelial (), hybrid EMT (), and mesenchymal (). The platform's sensitivity was verified by a strong correlation between EMT scores and invasive phenotypes, as well as responses to physiological concentrations of the protease inhibitor batimastat. Key invasion parameters-including invasive area, maximum invasion distance, and branching complexity-were measured under both genomic and drug-induced conditions. The platform demonstrated high inter-organoid reproducibility, with precise control over initial cell numbers ensuring batch-to-batch comparability. Invasion dynamics analysis revealed that epithelial cells () primarily relied on spatial constraints within the microcavity to invade. Batimastat drug sensitivity assays further distinguished invasion dependencies of the mesenchymal subtypes, confirming that patternoids exhibit a stronger sensitivity towards MMP inhibition compared to patternoids. Concurrentlty, both subtypes experienced a shift towards epithelial-like spatial constraint triggered invasion morphology, reflecting the plasticity of PDAC invasiveness. This scalable and adaptable 3D patternoid platform enables high-throughput analysis of invasive behaviors and therapeutic responses, offering significant potential for preclinical cancer research and personalized medicine.
胰腺导管腺癌(PDAC)是一种具有高度侵袭性和异质性的恶性肿瘤,给可重复建模和功能表型分析带来了挑战。为了解决这些局限性,我们开发了一种标准化的3D模式样平台,该平台使用基于胶原蛋白的微腔阵列来提高类器官形成的一致性,并量化亚型特异性侵袭机制。我们利用通过上皮-间质转化(EMT)分为三种亚型的小鼠原发性PDAC细胞:上皮型()、混合EMT型()和间质型()。通过EMT评分与侵袭表型之间的强相关性以及对生理浓度的蛋白酶抑制剂batimastat的反应,验证了该平台的敏感性。在基因组和药物诱导条件下测量了关键侵袭参数,包括侵袭面积、最大侵袭距离和分支复杂性。该平台显示出高类器官间再现性,通过精确控制初始细胞数量确保批次间的可比性。侵袭动力学分析表明,上皮细胞()主要依靠微腔内的空间限制进行侵袭。batimastat药物敏感性试验进一步区分了间质亚型的侵袭依赖性,证实模式样对MMP抑制的敏感性比模式样更强。同时,两种亚型都经历了向类似上皮的空间限制触发的侵袭形态的转变,反映了PDAC侵袭性的可塑性。这种可扩展且适应性强的3D模式样平台能够对侵袭行为和治疗反应进行高通量分析,为临床前癌症研究和个性化医疗提供了巨大潜力。