Ylitalo Andrew S, Chao Huikuan, Walker Pierre J, Crosthwaite Jacob, Fitzgibbons Thomas C, Ginzburg Valeriy G, Zhou Weijun, Wang Zhen-Gang, Di Maio Ernesto, Kornfield Julia A
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Dow, Inc., Midland, Michigan 48667, United States.
Ind Eng Chem Res. 2022 Aug 31;61(34):12835-12844. doi: 10.1021/acs.iecr.2c02396. Epub 2022 Aug 18.
In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethane-commonly used for thermal insulation, acoustic insulation, and cushioning-which increasingly relies on CO to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO. While previous studies have suggested the importance of the effect of hydroxyl end groups on CO solubility in short polyols (<1000 g/mol), their effect in polyols with higher molecular weight (≥1000 g/mol) and higher functionality (>2 hydroxyls per chain)-as are commonly used in polyurethane foams-has not been reported. Here, we show that the solubility of CO in polyether polyols decreases with molecular weight above 1000 g/mol and decreases with functionality using measurements performed by gravimetry-axisymmetric drop-shape analysis. The nonmonotonic effect of molecular weight on CO solubility results from the competition between effects that reduce CO solubility (lower mixing entropy) and effects that increase CO solubility (lower ratio of hydroxyl end groups to ether backbone groups). To generalize our measurements, we modeled the CO solubility using a perturbed chain-statistical associating fluid theory (PC-SAFT) model, which we validated by showing that a density functional theory model based on the PC-SAFT free energy accurately predicted the interfacial tension.
在二氧化碳发泡的聚合物泡沫中,二氧化碳(CO₂)在聚合物中的溶解度深刻地塑造了泡沫的结构,进而影响其物理性能。聚氨酯泡沫就是这样一种泡沫,它常用于隔热、隔音和缓冲,并且越来越依赖二氧化碳来替代对环境有害的发泡剂。聚氨酯是通过异氰酸酯和多元醇反应生产的,其中多元醇对二氧化碳的溶解能力更强。虽然之前的研究表明羟基端基对短链多元醇(<1000 g/mol)中二氧化碳溶解度的影响很重要,但它们在更高分子量(≥1000 g/mol)和更高官能度(每条链>2个羟基)的多元醇中的影响尚未见报道,而这种多元醇常用于聚氨酯泡沫中。在这里,我们通过重量法-轴对称滴形分析测量表明,二氧化碳在聚醚多元醇中的溶解度随着分子量高于1000 g/mol而降低,并且随着官能度的增加而降低。分子量对二氧化碳溶解度的非单调影响源于降低二氧化碳溶解度的效应(较低的混合熵)和增加二氧化碳溶解度的效应(羟基端基与醚主链基团的比例较低)之间的竞争。为了推广我们的测量结果,我们使用扰动链统计缔合流体理论(PC-SAFT)模型对二氧化碳溶解度进行建模,并通过基于PC-SAFT自由能的密度泛函理论模型准确预测界面张力来进行验证。