Centre for Optometry & Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK.
National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.
Ophthalmic Physiol Opt. 2022 Nov;42(6):1338-1352. doi: 10.1111/opo.13041. Epub 2022 Sep 6.
There are several indirect methods used to estimate retinal ganglion cell (RGC) count in an individual eye, but there is limited information as to the agreement between these methods. In this work, RGC receptive field (RGC-RF) count underlying a spot stimulus (0.43°, Goldmann III) was calculated and compared using three different methods.
RGC-RF count was calculated at a retinal eccentricity of 2.32 mm for 44 healthy adult participants (aged 18-58 years, refractive error -9.75 DS to +1.75 DS) using: (i) functional measures of achromatic peripheral grating resolution acuity (PGRA), (ii) structural measures of RGC-layer thickness (OCT-model, based on the method outlined by Raza and Hood) and (iii) scaling published histology density data to simulate a global expansion in myopia (Histology-Balloon).
Whilst average RGC-RF counts from the OCT-model (median 105.3, IQR 99.6-111.0) and the Histology-Balloon model (median 107.5, IQR 97.7-114.6) were similar, PGRA estimates were approximately 65% lower (median 37.7, IQR 33.8-46.0). However, there was poor agreement between all three methods (Bland-Altman 95% limits of agreement; PGRA/OCT: 55.4; PGRA/Histology-Balloon 59.3; OCT/Histology-Balloon: 52.4). High intersubject variability in RGC-RF count was evident using all three methods.
The lower PGRA RGC-RF counts may be the result of targeting only a specific subset of functional RGCs, as opposed to the coarser approach of the OCT-model and Histology-Balloon, which include all RGCs, and also likely displaced amacrine cells. In the absence of a 'ground truth', direct measure of RGC-RF count, it is not possible to determine which method is most accurate, and each has limitations. However, what is clear is the poor agreement found between the methods prevents direct comparison of RGC-RF counts between studies utilising different methodologies and highlights the need to utilise the same method in longitudinal work.
有几种间接方法可用于估计个体眼中的视网膜神经节细胞(RGC)数量,但有关这些方法之间的一致性的信息有限。在这项工作中,计算并比较了在 2.32mm 视网膜偏心度下基于点状刺激(0.43°,Goldmann III)的 RGC 感受野(RGC-RF)计数,使用了三种不同的方法。
使用以下三种方法为 44 名健康成年参与者(年龄 18-58 岁,屈光度-9.75 DS 至+1.75 DS)计算 RGC-RF 计数:(i)色觉周边光栅分辨率敏锐度的功能测量(PGRA),(ii)基于 Raza 和 Hood 所述方法的 RGC 层厚度的结构测量(OCT 模型),以及(iii)将已发表的组织学密度数据缩放以模拟近视的全面扩张(Histology-Balloon)。
尽管 OCT 模型(中位数 105.3,IQR 99.6-111.0)和 Histology-Balloon 模型(中位数 107.5,IQR 97.7-114.6)的平均 RGC-RF 计数相似,但 PGRA 估计值大约低 65%(中位数 37.7,IQR 33.8-46.0)。然而,所有三种方法之间的一致性都很差(Bland-Altman 95%一致性界限;PGRA/OCT:55.4;PGRA/Histology-Balloon:59.3;OCT/Histology-Balloon:52.4)。使用所有三种方法都可以明显看出 RGC-RF 计数的个体间变异性很大。
较低的 PGRA RGC-RF 计数可能是因为仅针对特定的功能 RGC 子集进行了靶向,而不是 OCT 模型和 Histology-Balloon 较为粗糙的方法,后两种方法包括所有 RGC,还可能包括移位的无长突细胞。在没有 RGC-RF 计数的“真实值”的情况下,无法确定哪种方法最准确,每种方法都有其局限性。但是,很明显,方法之间的一致性很差,这使得无法直接比较利用不同方法学的研究之间的 RGC-RF 计数,并突出了在纵向研究中使用相同方法的必要性。