Suppr超能文献

基于自适应光学的光学相干断层成像技术对透明视网膜结构和过程的细胞尺度成像。

Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography.

机构信息

School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; email:

出版信息

Annu Rev Vis Sci. 2020 Sep 15;6:115-148. doi: 10.1146/annurev-vision-030320-041255. Epub 2020 Jul 1.

Abstract

High-resolution retinal imaging is revolutionizing how scientists and clinicians study the retina on the cellular scale. Its exquisite sensitivity enables time-lapse optical biopsies that capture minute changes in the structure and physiological processes of cells in the living eye. This information is increasingly used to detect disease onset and monitor disease progression during early stages, raising the possibility of personalized eye care. Powerful high-resolution imaging tools have been in development for more than two decades; one that has garnered considerable interest in recent years is optical coherence tomography enhanced with adaptive optics. State-of-the-art adaptive optics optical coherence tomography (AO-OCT) makes it possible to visualize even highly transparent cells and measure some of their internal processes at all depths within the retina, permitting reconstruction of a 3D view of the living microscopic retina. In this review, we report current AO-OCT performance and its success in visualizing and quantifying these once-invisible cells in human eyes.

摘要

高分辨率视网膜成像是科学家和临床医生在细胞水平上研究视网膜的一种革命性方法。它具有极高的灵敏度,能够进行延时光学活检,捕捉活体眼中细胞结构和生理过程的微小变化。这些信息越来越多地用于在早期阶段检测疾病的发生并监测疾病的进展,从而实现个性化的眼部护理。高分辨率成像工具已经开发了二十多年;近年来,一种引起广泛关注的工具是结合自适应光学技术的光相干断层扫描增强技术。最先进的自适应光学光相干断层扫描(AO-OCT)使得即使是高度透明的细胞也能够可视化,并在视网膜的所有深度测量其内部过程,从而可以重建活体微观视网膜的 3D 视图。在这篇综述中,我们报告了当前的 AO-OCT 性能及其在可视化和量化人眼中这些曾经不可见细胞方面的成功。

相似文献

1
Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography.
Annu Rev Vis Sci. 2020 Sep 15;6:115-148. doi: 10.1146/annurev-vision-030320-041255. Epub 2020 Jul 1.
3
Adaptive optics imaging of the human retina.
Prog Retin Eye Res. 2019 Jan;68:1-30. doi: 10.1016/j.preteyeres.2018.08.002. Epub 2018 Aug 27.
6
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
7
A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT51-68. doi: 10.1167/iovs.16-19103.
9
Adaptive optics retinal imaging: emerging clinical applications.
Optom Vis Sci. 2010 Dec;87(12):930-41. doi: 10.1097/OPX.0b013e3181ff9a8b.
10
Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1373-83. doi: 10.1364/josaa.24.001373.

引用本文的文献

1
Inverse-scattering in biological samples via beam-propagation.
bioRxiv. 2025 Aug 22:2025.08.17.670744. doi: 10.1101/2025.08.17.670744.
2
Wide-field choriocapillaris mapping with 3.4 MHz adaptive optics-optical coherence tomography angiography.
Biomed Opt Express. 2025 Jul 17;16(8):3255-3269. doi: 10.1364/BOE.550936. eCollection 2025 Aug 1.
3
Inner Plexiform Layer Substrata Are Discernible with Commercial OCT and Affected by Aging.
Ophthalmol Sci. 2025 Apr 28;5(5):100815. doi: 10.1016/j.xops.2025.100815. eCollection 2025 Sep-Oct.
4
Identification of and NLRP3 inflammasome activation in Alzheimer's disease retina.
Res Sq. 2025 Jun 26:rs.3.rs-6658954. doi: 10.21203/rs.3.rs-6658954/v1.
5
3D-printed phantoms for measuring lateral resolution and contrast performance of ophthalmic adaptive optics imaging systems.
Biomed Opt Express. 2025 Jun 10;16(7):2692-2708. doi: 10.1364/BOE.551755. eCollection 2025 Jul 1.
6
Identification of and NLRP3 inflammasome activation in Alzheimer's disease retina.
bioRxiv. 2025 Jun 25:2025.06.19.660619. doi: 10.1101/2025.06.19.660619.
7
Analysis of retinal markers and incident amyotrophic lateral sclerosis: An optical coherence tomography-based cohort study.
PLoS Med. 2025 Jun 25;22(6):e1004545. doi: 10.1371/journal.pmed.1004545. eCollection 2025 Jun.
9
Quantification of optical lensing by cellular structures in the living human eye.
Biomed Opt Express. 2025 Jan 7;16(2):473-498. doi: 10.1364/BOE.547734. eCollection 2025 Feb 1.
10
Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease.
Acta Neuropathol Commun. 2025 Feb 15;13(1):31. doi: 10.1186/s40478-025-01935-y.

本文引用的文献

1
Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz.
Optica. 2019 Mar 20;6(3):300-303. doi: 10.1364/OPTICA.6.000300.
2
Transscleral Optical Phase Imaging of the Human Retina.
Nat Photonics. 2020 Jul;14(7):439-445. doi: 10.1038/s41566-020-0608-y. Epub 2020 Mar 23.
3
Suite of methods for assessing inner retinal temporal dynamics across spatial and temporal scales in the living human eye.
Neurophotonics. 2020 Jan;7(1):015013. doi: 10.1117/1.NPh.7.1.015013. Epub 2020 Mar 14.
4
Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications.
Prog Retin Eye Res. 2020 Jul;77:100828. doi: 10.1016/j.preteyeres.2019.100828. Epub 2020 Jan 3.
5
Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina.
Opt Lett. 2019 Dec 1;44(23):5671-5674. doi: 10.1364/OL.44.005671.
6
Imaging Retinal Activity in the Living Eye.
Annu Rev Vis Sci. 2019 Sep 15;5:15-45. doi: 10.1146/annurev-vision-091517-034239.
7
Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging.
Opt Lett. 2019 Sep 1;44(17):4219-4222. doi: 10.1364/OL.44.004219.
8
measurement of organelle motility in human retinal pigment epithelial cells.
Biomed Opt Express. 2019 Jul 19;10(8):4142-4158. doi: 10.1364/BOE.10.004142. eCollection 2019 Aug 1.
9
Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking.
Biomed Opt Express. 2019 May 21;10(6):2918-2931. doi: 10.1364/BOE.10.002918. eCollection 2019 Jun 1.
10
Cellular imaging of inherited retinal diseases using adaptive optics.
Eye (Lond). 2019 Nov;33(11):1683-1698. doi: 10.1038/s41433-019-0474-3. Epub 2019 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验