Suppr超能文献

比较临床试验中危害沟通的数据可视化方法的价值。

Comparing the Value of Data Visualization Methods for Communicating Harms in Clinical Trials.

出版信息

Epidemiol Rev. 2022 Dec 21;44(1):55-66. doi: 10.1093/epirev/mxac005.

Abstract

In clinical trials, harms (i.e., adverse events) are often reported by simply counting the number of people who experienced each event. Reporting only frequencies ignores other dimensions of the data that are important for stakeholders, including severity, seriousness, rate (recurrence), timing, and groups of related harms. Additionally, application of selection criteria to harms prevents most from being reported. Visualization of data could improve communication of multidimensional data. We replicated and compared the characteristics of 6 different approaches for visualizing harms: dot plot, stacked bar chart, volcano plot, heat map, treemap, and tendril plot. We considered binary events using individual participant data from a randomized trial of gabapentin for neuropathic pain. We assessed their value using a heuristic approach and a group of content experts. We produced all figures using R and share the open-source code on GitHub. Most original visualizations propose presenting individual harms (e.g., dizziness, somnolence) alone or alongside higher level (e.g., by body systems) summaries of harms, although they could be applied at either level. Visualizations can present different dimensions of all harms observed in trials. Except for the tendril plot, all other plots do not require individual participant data. The dot plot and volcano plot are favored as visualization approaches to present an overall summary of harms data. Our value assessment found the dot plot and volcano plot were favored by content experts. Using visualizations to report harms could improve communication. Trialists can use our provided code to easily implement these approaches.

摘要

在临床试验中,危害(即不良事件)通常通过简单地计算每个事件发生的人数来报告。仅报告频率会忽略数据的其他重要维度,这些维度对利益相关者很重要,包括严重程度、严重性、发生率(复发)、时间和相关危害的分组。此外,对危害应用选择标准会阻止大多数危害被报告。数据可视化可以改善多维数据的沟通。我们复制并比较了 6 种不同的危害可视化方法的特征:点图、堆叠条形图、火山图、热图、树状图和缠结图。我们使用来自加巴喷丁治疗神经性疼痛的随机试验的个体参与者数据来考虑二项事件。我们使用启发式方法和一组内容专家来评估它们的价值。我们使用 R 生成所有图形,并在 GitHub 上共享开源代码。大多数原始可视化方案建议单独呈现个体危害(例如头晕、嗜睡)或与危害的更高层次(例如按身体系统)摘要一起呈现,尽管它们可以在任何一个层面上应用。可视化可以呈现试验中观察到的所有危害的不同维度。除了缠结图外,所有其他图表都不需要个体参与者数据。点图和火山图是作为呈现危害数据总体摘要的首选可视化方法。我们的价值评估发现,内容专家更喜欢点图和火山图。使用可视化来报告危害可以改善沟通。试验人员可以使用我们提供的代码轻松实现这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e04/9780120/001918f33c22/mxac005f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验