Gong Zhiwei, Xu Wei, Liedienov N A, Butenko D S, Zatovsky I V, Gural'skiy I A, Wei Ziyu, Li Quanjun, Liu Bingbing, Batman Yu A, Pashchenko A V, Levchenko G G
State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University, 130012, Changchun, China.
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China.
Phys Chem Chem Phys. 2022 Sep 21;24(36):21872-21885. doi: 10.1039/d2cp01959k.
Prospects for the use of manganites in various areas of modern technologies require comprehensive studies of their physical and chemical properties. LaMnO (LMO) ceramics have been synthesized at an annealing temperature of 1150 °C with further post-annealing at 1250, 1350, and 1450 °C. As increases, the structure symmetry changes, and both the crystallite size and chemical defects increase. The post-annealing, on one hand, leads to a dramatic reduction of the magnetocaloric effect (MCE) |-ΔmaxM| from 3.50 to 0.75 J (kg K) at 2 T and a Curie temperature from 227 to 113 K with increasing . On the other hand, an external hydrostatic high-pressure works oppositely enhancing ferromagnetic interactions. The saturation of -ΔmaxM and is already achieved at a relatively low of ≈ 0.4 GPa. LMO-1150 exhibits the best magnetocaloric characteristics compared with other studied samples. Moreover, the electrochemical characteristics of the LMO materials as electrocatalysts for overall water splitting (OER process) and features of their transformation in different 0.5 M KSO, 0.5 M KHPO, and 0.1 M KBO electrolytes have been studied thoroughly. After electrocatalysis of LMO, the magnetization decreases and remains, which makes it possible to control the depletion of electrodes and predict their working time based on the magnetic measurements. All samples show the best OER activity in the 0.5 M KHPO media. The obtained results demonstrate the ways for controlling the MCE of LMO under changing internal and external conditions, and an evaluation of the possibilities for their OER applications in electrocatalysts.
在现代技术的各个领域中使用锰酸盐的前景需要对其物理和化学性质进行全面研究。已在1150℃的退火温度下合成了LaMnO(LMO)陶瓷,并在1250、1350和1450℃下进行了进一步的退火处理。随着[具体参数]增加,结构对称性发生变化,微晶尺寸和化学缺陷均增加。一方面,退火处理导致磁热效应(MCE)|-ΔmaxM|在2T时从3.50急剧降至0.75J/(kg·K),居里温度从227K降至113K,且随着[具体参数]增加而降低。另一方面,外部静水高压的作用则相反,会增强铁磁相互作用。在相对较低的约0.4GPa的[具体参数]下,-ΔmaxM和[相关参数]就已达到饱和。与其他研究样品相比,LMO-1150表现出最佳的磁热特性。此外,还深入研究了LMO材料作为全水分裂(OER过程)电催化剂的电化学特性及其在不同的0.5M KSO、0.5M KHPO和0.1M KBO电解质中的转变特征。LMO进行电催化后,磁化强度[具体参数]降低而[另一具体参数]保持不变,这使得能够基于磁测量来控制电极的损耗并预测其工作时间。所有样品在0.5M KHPO介质中均表现出最佳的OER活性。所得结果展示了在内部和外部条件变化下控制LMO的MCE的方法,以及对其在电催化剂中OER应用可能性的评估。