Zhang Tingting, Qin Wei, Nie Tingyue, Zhang Deyue, Wu Xuezhong
Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Department of Expanded Program on Immunization, Lu'an Municipal Center for Disease Control and Prevention, Lu'an, 237000, Anhui, China.
Environ Sci Pollut Res Int. 2023 Jan;30(4):10052-10062. doi: 10.1007/s11356-022-22878-0. Epub 2022 Sep 6.
Varicella (chickenpox) is a serious public health problem in China, with the most reported cases among childhood vaccine-preventable infectious diseases, and its reported incidence has increased over 20-fold since 2005. Few previous studies have explored the association of multiple meteorological factors with varicella and considered the potential confounding effects of air pollutants. It is the first study to investigate and analyze the effects of multiple meteorological factors on varicella incidence, controlling for the confounding effects of various air pollutants. Daily meteorological and air pollution data and varicella cases were collected from January 1, 2015, to December 31, 2020, in Lu'an, Eastern China. A combination of the quasi-Poisson generalized additive model (GAM) and distributed lag nonlinear model (DLNM) was used to evaluate the meteorological factor-lag-varicella relationship, and the risk of varicella in extreme meteorological conditions. The maximum single-day lag effects of varicella were 1.288 (95%CI, 1.201-1.381, lag 16 day), 1.475 (95%CI, 1.152-1.889, lag 0 day), 1.307 (95%CI, 1.196-1.427, lag 16 day), 1.271 (95%CI, 0.981-1.647, lag 4 day), and 1.266 (95%CI, 1.162-1.378, lag 21 day), when mean temperature, diurnal temperature range (DTR), mean air pressure, wind speed, and sunshine hours were -5.8°C, 13.5°C, 1035.5 hPa, 6 m/s, and 0 h, respectively. At the maximum lag period, the overall effects of mean temperature and pressure on varicella showed W-shaped curves, peaked at 17.5°C (RR=2.085, 95%CI: 1.480-2.937) and 1035.5 hPa (RR=5.481, 95%CI: 1.813-16.577), while DTR showed an M-shaped curve and peaked at 4.4°C (RR=6.131, 95%CI: 1.120-33.570). Sunshine hours were positively correlated with varicella cases at the lag of 0-8 days and 0-9 days when sunshine duration exceeded 10 h. Furthermore, the lag effects of extreme meteorological factors on varicella cases were statistically significant, except for the extremely high wind speed. We found that mean temperature, mean air pressure, DTR, and sunshine hours had significant nonlinear effects on varicella incidence, which may be important predictors of varicella early warning.
水痘在中国是一个严重的公共卫生问题,在儿童疫苗可预防的传染病中报告病例数最多,自2005年以来其报告发病率增长了20多倍。以往很少有研究探讨多种气象因素与水痘的关联并考虑空气污染物的潜在混杂效应。本研究首次调查并分析多种气象因素对水痘发病率的影响,同时控制各种空气污染物的混杂效应。收集了2015年1月1日至2020年12月31日中国东部六安市的每日气象和空气污染数据以及水痘病例。采用准泊松广义相加模型(GAM)和分布滞后非线性模型(DLNM)相结合的方法评估气象因素-滞后-水痘的关系以及极端气象条件下水痘的风险。当平均温度、日温差(DTR)、平均气压、风速和日照时数分别为-5.8°C、13.5°C、1035.5 hPa、6 m/s和0 h时,水痘的最大单日滞后效应分别为1.288(95%CI,1.201 - 1.381,滞后16天)、1.475(95%CI,1.152 - 1.889,滞后0天)、1.307(95%CI,1.196 - 1.427,滞后16天)、1.271(95%CI,0.981 - 1.647,滞后4天)和1.266(95%CI,1.162 - 1.378,滞后21天)。在最大滞后期,平均温度和气压对水痘的总体影响呈W形曲线,分别在17.5°C(RR = 2.085,95%CI:1.480 - 2.937)和1035.5 hPa(RR = 5.481,95%CI:1.813 - 16.577)达到峰值,而DTR呈M形曲线,在4.4°C(RR = 6.131,95%CI:1.120 - 33.570)达到峰值。当日照时长超过10小时时,日照时数在滞后0 - 8天和0 - 9天与水痘病例呈正相关。此外,除了极高风速外,极端气象因素对水痘病例的滞后效应具有统计学意义。我们发现平均温度、平均气压、DTR和日照时数对水痘发病率有显著的非线性影响,这可能是水痘预警的重要预测指标。