Suppr超能文献

基于邻居选择图注意力网络预测微小RNA-疾病关联

Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks.

作者信息

Zhao Huan, Li Zhengwei, You Zhu-Hong, Nie Ru, Zhong Tangbo

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1298-1307. doi: 10.1109/TCBB.2022.3204726. Epub 2023 Apr 3.

Abstract

Numerous experiments have shown that the occurrence of complex human diseases is often accompanied by abnormal expression of microRNA (miRNA). Identifying the associations between miRNAs and diseases is of great significance in the development of clinical medicine. However, traditional experimental methods are often time-consuming and inefficient. To this end, we proposed a deep learning method based on neighbor selection graph attention networks for predicting miRNA-disease associations (NSAMDA). Specifically, we firstly fused miRNA sequence similarity information and miRNA integrated similarity information to enrich miRNA feature information. Secondly, we used the fused miRNA feature information and disease integrated similarity information to construct a miRNA-disease heterogeneous graph. Thirdly, we introduced a neighbor selection method based on graph attention networks to select k-most important neighbors for aggregation. Finally, we used the inner product decoder to score miRNA-disease pairs. The results of five-fold cross-validation show that the mean AUC of NSAMDA is 93.69% on HMDD v2.0 dataset. In addition, case studies on the esophageal neoplasm, lung neoplasm and lymphoma were carried out to further confirm the effectiveness of the NSAMDA model. The results showed that the NSAMDA method achieves satisfactory performance on predicting miRNA-disease associations and is superior to the most advanced model.

摘要

大量实验表明,复杂人类疾病的发生往往伴随着微小RNA(miRNA)的异常表达。识别miRNA与疾病之间的关联在临床医学发展中具有重要意义。然而,传统实验方法往往耗时且效率低下。为此,我们提出了一种基于邻居选择图注意力网络的深度学习方法来预测miRNA-疾病关联(NSAMDA)。具体而言,我们首先融合了miRNA序列相似性信息和miRNA综合相似性信息,以丰富miRNA特征信息。其次,我们利用融合后的miRNA特征信息和疾病综合相似性信息构建了一个miRNA-疾病异构图。第三,我们引入了一种基于图注意力网络的邻居选择方法,以选择k个最重要的邻居进行聚合。最后,我们使用内积解码器对miRNA-疾病对进行评分。五折交叉验证结果表明,NSAMDA在HMDD v2.0数据集上的平均AUC为93.69%。此外,对食管肿瘤、肺肿瘤和淋巴瘤进行了案例研究,以进一步证实NSAMDA模型的有效性。结果表明,NSAMDA方法在预测miRNA-疾病关联方面取得了令人满意的性能,并且优于最先进的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验