Suppr超能文献

用于医疗保健可解释采用的多方面深度主动注意力网络

Multi-Aspect Deep Active Attention Network for Healthcare Explainable Adoption.

作者信息

Ahmed Usman, Lin Jerry Chun-Wei, Srivastava Gautam

出版信息

IEEE J Biomed Health Inform. 2023 Apr;27(4):1709-1717. doi: 10.1109/JBHI.2022.3204633. Epub 2023 Apr 4.

Abstract

Depression is a serious illness that significantly affects the lives of those affected. Recent studies have looked at the possibility of detecting and diagnosing this mental disorder using user-generated data from various forms of online media. Therefore, we address the issue of detecting sadness in social media by focusing on terms in personal remarks. To overcome the limitations in classifying depression texts, this study aims to develop attention networks that use covert levels of self-attention. Since nodes/words can express properties/emotions of their neighbors, this paper naturally assigns each node in a neighborhood a weight without performing costly matrix operations such as similarity or network architecture knowledge. This paper extends the emotion lexicon by using hypernyms. For this reason, our method is superior to the performance of other designs. According to the results of our experiments, the emotion lexicon combined with an attention network achieves an ROC of 0.87 while maintaining its interpretability and transparency level. Subsequently, the learned embedding is used to display the contribution of each symptom to the activated word, and the psychiatrist is polled to obtain his qualitative agreement with this representation. By using unlabeled forum language, the method increases the rate at which depression symptoms can be identified from information in Internet forums.

摘要

抑郁症是一种严重的疾病,会对患者的生活产生重大影响。最近的研究探讨了利用来自各种在线媒体的用户生成数据来检测和诊断这种精神障碍的可能性。因此,我们通过关注个人言论中的词汇来解决社交媒体中悲伤情绪检测的问题。为了克服抑郁症文本分类中的局限性,本研究旨在开发使用隐性自注意力水平的注意力网络。由于节点/单词可以表达其邻居的属性/情感,本文无需执行诸如相似度或网络架构知识等代价高昂的矩阵运算,就能自然地为邻域中的每个节点赋予权重。本文通过使用上位词来扩展情感词典。因此,我们的方法优于其他设计的性能。根据我们的实验结果,结合注意力网络的情感词典在保持其可解释性和透明度水平的同时,实现了0.87的ROC。随后,使用学习到的嵌入来展示每个症状对激活词的贡献,并向精神科医生征求其对这种表示的定性认可。通过使用未标记的论坛语言,该方法提高了从互联网论坛信息中识别抑郁症症状的比率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验