Suppr超能文献

生物钟基因依赖性谷氨酸动力学在豆芫菁脑中调节光周期生殖。

Clock gene-dependent glutamate dynamics in the bean bug brain regulate photoperiodic reproduction.

机构信息

Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.

出版信息

PLoS Biol. 2022 Sep 6;20(9):e3001734. doi: 10.1371/journal.pbio.3001734. eCollection 2022 Sep.

Abstract

Animals adequately modulate their physiological status and behavior according to the season. Many animals sense photoperiod for seasonal adaptation, and the circadian clock is suggested to play an essential role in photoperiodic time measurement. However, circadian clock-driven neural signals in the brain that convey photoperiodic information remain unclear. Here, we focused on brain extracellular dynamics of a classical neurotransmitter glutamate, which is widely used for brain neurotransmission, and analyzed its involvement in photoperiodic responses using the bean bug Riptortus pedestris that shows clear photoperiodism in reproduction. Extracellular glutamate levels in the whole brain were significantly higher under short-day conditions, which cause a reproductive diapause, than those under long-day conditions. The photoperiodic change in glutamate levels was clearly abolished by knockdown of the clock gene period. We also demonstrated that genetic modulation of glutamate dynamics by knockdown of glutamate-metabolizing enzyme genes, glutamate oxaloacetate transaminase (got) and glutamine synthetase (gs), attenuated photoperiodic responses in reproduction. Further, we investigated glutamate-mediated photoperiodic modulations at a cellular level, focusing on the pars intercerebralis (PI) neurons that photoperiodically change their neural activity and promote oviposition. Electrophysiological analyses showed that L-Glutamate acts as an inhibitory signal to PI neurons via glutamate-gated chloride channel (GluCl). Additionally, combination of electrophysiology and genetics revealed that knockdown of got, gs, and glucl disrupted cellular photoperiodic responses of the PI neurons, in addition to reproductive phenotypes. Our results reveal that the extracellular glutamate dynamics are photoperiodically regulated depending on the clock gene and play an essential role in the photoperiodic control of reproduction via inhibitory pathways.

摘要

动物会根据季节适当调节生理状态和行为。许多动物通过感知光周期来适应季节性变化,而昼夜节律钟被认为在光周期时间测量中发挥着重要作用。然而,传达光周期信息的大脑中昼夜节律钟驱动的神经信号仍不清楚。在这里,我们专注于经典神经递质谷氨酸的脑细胞外动力学,谷氨酸广泛用于脑神经传递,并使用表现出明显光周期现象的豆芫菁 Riptortus pedestris 分析其在光周期反应中的作用。在导致生殖滞育的短日条件下,整个大脑中的细胞外谷氨酸水平明显高于长日条件下的水平。时钟基因 period 的敲低明显消除了谷氨酸水平的光周期变化。我们还证明了通过敲低谷氨酸代谢酶基因谷氨酸草酰乙酸转氨酶(got)和谷氨酰胺合成酶(gs)来调节谷氨酸动力学,可以减弱生殖的光周期反应。此外,我们在细胞水平上研究了谷氨酸介导的光周期调节,重点研究了 pars intercerebralis(PI)神经元,这些神经元的神经活动在光周期变化并促进产卵。电生理分析表明,L-谷氨酸通过谷氨酸门控氯离子通道(GluCl)作为 PI 神经元的抑制信号。此外,电生理学和遗传学的组合表明,除了生殖表型外,got、gs 和 glucl 的敲低还破坏了 PI 神经元的细胞光周期反应。我们的研究结果表明,细胞外谷氨酸动力学受时钟基因的光周期调节,通过抑制途径在光周期控制生殖中发挥着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/9447885/f3446fd3faa5/pbio.3001734.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验