Suppr超能文献

具有随机参数的生态模型的不确定性量化。

Uncertainty quantification for ecological models with random parameters.

作者信息

Reimer Jody R, Adler Frederick R, Golden Kenneth M, Narayan Akil

机构信息

Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.

出版信息

Ecol Lett. 2022 Oct;25(10):2232-2244. doi: 10.1111/ele.14095. Epub 2022 Sep 6.

Abstract

There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data.

摘要

生态模型中的参数往往存在很大的不确定性。通过将参数视为具有分布的随机变量而非固定量,可以将这种不确定性纳入模型。不确定性量化方法(如多项式混沌方法)的最新进展使得对具有随机参数的模型进行分析成为可能。我们通过一个关于异质环境中海冰藻华的激励性案例研究来介绍这些方法。我们将蒙特卡罗方法与多项式混沌技术进行比较,以帮助理解具有随机参数的藻华模型的动态。将藻华模型中的关键参数建模为随机变量会改变模拟藻华的时间、强度和总体生产力。多项式混沌方法的计算效率为在生态模型中更广泛地纳入参数不确定性提供了一条有前景的途径,从而改进模型预测以及模型与数据之间的综合分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验