Suppr超能文献

基于多保真度蒙特卡罗和多项式混沌展开的血管血液动力学全局敏感性分析。

Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics.

机构信息

Division of Biomechanics, Norwegian University of Science and Technology (NTNU), Norway.

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

Int J Numer Method Biomed Eng. 2024 Aug;40(8):e3836. doi: 10.1002/cnm.3836. Epub 2024 Jun 5.

Abstract

Computational models of the cardiovascular system are increasingly used for the diagnosis, treatment, and prevention of cardiovascular disease. Before being used for translational applications, the predictive abilities of these models need to be thoroughly demonstrated through verification, validation, and uncertainty quantification. When results depend on multiple uncertain inputs, sensitivity analysis is typically the first step required to separate relevant from unimportant inputs, and is key to determine an initial reduction on the problem dimensionality that will significantly affect the cost of all downstream analysis tasks. For computationally expensive models with numerous uncertain inputs, sample-based sensitivity analysis may become impractical due to the substantial number of model evaluations it typically necessitates. To overcome this limitation, we consider recently proposed Multifidelity Monte Carlo estimators for Sobol' sensitivity indices, and demonstrate their applicability to an idealized model of the common carotid artery. Variance reduction is achieved combining a small number of three-dimensional fluid-structure interaction simulations with affordable one- and zero-dimensional reduced-order models. These multifidelity Monte Carlo estimators are compared with traditional Monte Carlo and polynomial chaos expansion estimates. Specifically, we show consistent sensitivity ranks for both bi- (1D/0D) and tri-fidelity (3D/1D/0D) estimators, and superior variance reduction compared to traditional single-fidelity Monte Carlo estimators for the same computational budget. As the computational burden of Monte Carlo estimators for Sobol' indices is significantly affected by the problem dimensionality, polynomial chaos expansion is found to have lower computational cost for idealized models with smooth stochastic response.

摘要

计算心血管系统模型越来越多地用于心血管疾病的诊断、治疗和预防。在用于转化应用之前,需要通过验证、确认和不确定性量化来彻底证明这些模型的预测能力。当结果取决于多个不确定输入时,敏感性分析通常是将相关输入与不相关输入区分开来的第一步,也是确定对问题维度的初步缩减的关键,这将显著影响所有下游分析任务的成本。对于具有众多不确定输入的计算成本高昂的模型,由于其通常需要大量的模型评估,基于样本的敏感性分析可能变得不切实际。为了克服这一限制,我们考虑了最近提出的用于 Sobol'敏感性指数的多保真度蒙特卡罗估计量,并将其应用于颈总动脉的理想化模型。通过将少量三维流固耦合模拟与经济实惠的一维和零维降阶模型相结合,可以实现方差缩减。将这些多保真度蒙特卡罗估计量与传统蒙特卡罗和多项式混沌扩展估计进行了比较。具体来说,我们展示了双保真度(1D/0D)和三保真度(3D/1D/0D)估计器的一致敏感性等级,并且与相同计算预算下的传统单保真度蒙特卡罗估计器相比,具有更好的方差缩减效果。由于蒙特卡罗估计量对 Sobol 指数的计算负担受到问题维度的显著影响,因此对于具有平滑随机响应的理想化模型,发现多项式混沌扩展具有更低的计算成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验