Lee Hyeon Jeong, Liu Xiaoxiao, Chart Yvonne, Tang Peng, Bae Jin-Gyu, Narayanan Sudarshan, Lee Ji Hoon, Potter Richard J, Sun Yongming, Pasta Mauro
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
The Faraday Institution, Harwell Campus, Quad One, Becquerel Avenue, Didcot OX11 0RA, United Kingdom.
Nano Lett. 2022 Sep 28;22(18):7477-7483. doi: 10.1021/acs.nanolett.2c02426. Epub 2022 Sep 7.
Solid-state batteries (SSBs) have received attention as a next-generation energy storage technology due to their potential to superior deliver energy density and safety compared to commercial Li-ion batteries. One of the main challenges limiting their practical implementation is the rapid capacity decay caused by the loss of contact between the cathode active material and the solid electrolyte upon cycling. Here, we use the promising high-voltage, low-cost LiNiMnO (LNMO) as a model system to demonstrate the importance of the cathode microstructure in SSBs. We design AlO-coated LNMO particles with a hollow microstructure aimed at suppressing electrolyte decomposition, minimizing volume change during cycling, and shortening the Li diffusion pathway to achieve maximum cathode utilization. When cycled with a LiPSCl solid electrolyte, we demonstrate a capacity retention above 70% after 100 cycles, with an active material loading of 27 mg cm (2.2 mAh cm) at a current density of 0.8 mA cm.
固态电池(SSB)作为一种下一代储能技术受到了关注,因为与商用锂离子电池相比,它们具有提供更高能量密度和安全性的潜力。限制其实际应用的主要挑战之一是在循环过程中,阴极活性材料与固体电解质之间失去接触导致容量迅速衰减。在这里,我们使用前景广阔的高压、低成本LiNiMnO(LNMO)作为模型系统,以证明阴极微观结构在固态电池中的重要性。我们设计了具有中空微观结构的AlO包覆的LNMO颗粒,旨在抑制电解质分解,使循环过程中的体积变化最小化,并缩短锂扩散路径,以实现阴极的最大利用率。当与LiPSCl固体电解质一起循环时,我们证明在100次循环后容量保持率高于70%,在电流密度为0.8 mA/cm时,活性材料负载量为27 mg/cm(2.2 mAh/cm)。