Suppr超能文献

氟化对富锂锰基层状氧化物阴极的影响。

Fluorination Effect on Lithium- and Manganese-Rich Layered Oxide Cathodes.

作者信息

Wang Faxing, Zuo Peng, Xue Zhichen, Liu Yijin, Wang Chongmin, Chen Guoying

机构信息

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

出版信息

ACS Energy Lett. 2024 Feb 27;9(3):1249-1260. doi: 10.1021/acsenergylett.3c02697. eCollection 2024 Mar 8.

Abstract

Lithium- and manganese-rich (LMR) layered oxides are promising high-energy cathodes for next-generation lithium-ion batteries, yet their commercialization has been hindered by a number of performance issues. While fluorination has been explored as a mitigating approach, results from polycrystalline-particle-based studies are inconsistent and the mechanism for improvement in some reports remains unclear. In the present study, we develop an fluorination method that leads to fluorinated LMR with no apparent impurities. Using well-defined single-crystal LiNiMnO (LNMO) as a platform, we show that a high fluorination level leads to decreased oxygen activities, reduced side reactions at high voltages, and a broadly improved cathode performance. Detailed characterization reveals a particle-level Mn concentration gradient from the surface to the bulk of fluorinated-LNMO crystals, ascribed to the formation of a Ni-rich LiNiMnOF ( > 0.5) spinel phase on the surface and a "spinel-layered" coherent structure in the bulk where domains of a LiNiMnO high-voltage spinel phase are integrated into the native layered framework. This work provides fundamental understanding of the fluorination effect on LMR and key insights for future development of high-energy Mn-based cathodes with an intergrown/composite crystal structure.

摘要

富锂锰(LMR)层状氧化物是下一代锂离子电池很有前景的高能量阴极材料,但其商业化受到诸多性能问题的阻碍。虽然氟化已被作为一种缓解方法进行探索,但基于多晶颗粒的研究结果并不一致,一些报告中性能改善的机制仍不明确。在本研究中,我们开发了一种氟化方法,可得到无明显杂质的氟化LMR材料。以结构明确的单晶LiNiMnO(LNMO)为平台,我们发现高氟化程度会降低氧活性,减少高电压下的副反应,并广泛改善阴极性能。详细表征揭示了氟化LNMO晶体从表面到本体的颗粒级锰浓度梯度,这归因于表面形成富镍的LiNiMnOF(>0.5)尖晶石相以及本体内形成“尖晶石-层状”相干结构,其中LiNiMnO高压尖晶石相的畴整合到原生层状框架中。这项工作为理解氟化对LMR的影响提供了基础认识,并为未来开发具有共生/复合晶体结构的高能锰基阴极提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe0/10928714/e83a4071edc2/nz3c02697_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验