Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, F-38054, Grenoble, Cedex, France.
Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120, Uppsala, Sweden.
Chemistry. 2022 Dec 9;28(69):e202202260. doi: 10.1002/chem.202202260. Epub 2022 Oct 19.
Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integration, through π-interactions, onto multiwalled carbon nanotube-based electrodes. In this configuration, the grafted catalyst could reach turnover numbers for H production (TON ) of up to 4±2×10 within 20 h of bulk electrolysis, operating at neutral pH. Post operando analysis of catalyst functionalized electrodes revealed the degradation of the catalytic unit occurred via loss of the iron carbonyl units, while the anchoring groups and most part of the ligand remained attached onto multiwalled carbon nanotubes.
受氢化酶活性位点启发,将分子催化剂进行表面整合,为开发无贵金属且可持续的制氢技术提供了一条很有前景的途径。高效和稳定的催化剂锚定是实现这一方法的关键方面。在此,我们报告了一种新型二铁六羰基配合物的制备和电化学表征,该配合物每个催化单元包含两个芘基,以便通过π-相互作用将其顺利整合到基于多壁碳纳米管的电极上。在这种结构中,接枝催化剂在中性 pH 条件下进行 20 小时的整体电解,其产氢的周转数(TON)可达 4±2×10。对功能化催化剂电极的后操作分析表明,催化单元的降解是通过失去铁羰基单元发生的,而锚定基团和大部分配体仍附着在多壁碳纳米管上。