School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, India 700032.
Department of Chemistry- Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden.
J Am Chem Soc. 2022 Mar 2;144(8):3614-3625. doi: 10.1021/jacs.1c12605. Epub 2022 Feb 20.
With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H/O fuel cell device.
随着太阳能和风能的价格竞争力的提高,氢能技术可能成为实现更清洁、去碳化和可持续能源未来的游戏规则改变者。H 确实可以在电解槽中从水中产生,长时间储存,并根据需要在燃料电池中转化回电能。后一种工艺的可行性关键取决于廉价、高效的催化剂的发现,这些催化剂能够在燃料电池的阳极和阴极替代铂族金属。仿生学可以成为设计这种替代催化剂的关键。在这里,我们展示了一类新型的基于[FeFe]-氢化酶活性中心的铁基催化剂,在近中性水条件下,作为高效转化 H 和质子的首例双向电催化剂。这种受生物启发的催化剂已经被应用于功能无膜 H/O 燃料电池装置的阳极。