Suppr超能文献

大海捞针的磁体:“晶体结构优先”片段命中物通过对广阔化学空间的靶向探索解锁活性化学物质。

Magnet for the Needle in Haystack: "Crystal Structure First" Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces.

作者信息

Müller Janis, Klein Raphael, Tarkhanova Olga, Gryniukova Anastasiia, Borysko Petro, Merkl Stefan, Ruf Moritz, Neumann Alexander, Gastreich Marcus, Moroz Yurii S, Klebe Gerhard, Glinca Serghei

机构信息

CrystalsFirst GmbH, Marbacher Weg 6, 35037Marburg, Germany.

BioSolveIT GmbH, An der Ziegelei 79, 53757Sankt Augustin, Germany.

出版信息

J Med Chem. 2022 Dec 8;65(23):15663-15678. doi: 10.1021/acs.jmedchem.2c00813. Epub 2022 Sep 7.

Abstract

Fragment-based drug discovery (FBDD) has successfully led to approved therapeutics for challenging and "undruggable" targets. In the context of FBDD, we introduce a novel, multidisciplinary method to identify active molecules from purchasable chemical space. Starting from four small-molecule fragment complexes of protein kinase A (PKA), a template-based docking screen using Enamine's multibillion REAL Space was performed. A total of 93 molecules out of 106 selected compounds were successfully synthesized. Forty compounds were active in at least one validation assay with the most active follow-up having a 13,500-fold gain in affinity. Crystal structures for six of the most promising binders were rapidly obtained, verifying the binding mode. The overall success rate for this novel fragment-to-hit approach was 40%, accomplished in only 9 weeks. The results challenge the established fragment prescreening paradigm since the standard industrial filters for fragment hit identification in a thermal shift assay would have missed the initial fragments.

摘要

基于片段的药物发现(FBDD)已成功研发出针对具有挑战性的“不可成药”靶点的获批疗法。在FBDD的背景下,我们引入了一种新颖的多学科方法,从可购买的化学空间中识别活性分子。从蛋白激酶A(PKA)的四个小分子片段复合物开始,使用Enamine公司价值数十亿美元的REAL Space进行了基于模板的对接筛选。106个选定化合物中共有93个分子成功合成。40种化合物在至少一种验证试验中具有活性,其中活性最高的后续化合物亲和力提高了13500倍。快速获得了六种最有前景的结合剂的晶体结构,验证了结合模式。这种新颖的从片段到活性分子的方法的总体成功率为40%,仅在9周内就完成了。这些结果对既定的片段预筛选模式提出了挑战,因为在热位移试验中用于识别片段活性分子的标准工业筛选方法会遗漏最初的片段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验