Suppr超能文献

单晶钙钛矿太阳能电池展现出接近半毫米的电子扩散长度。

Single-Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron-Diffusion Length.

作者信息

Turedi Bekir, Lintangpradipto Muhammad N, Sandberg Oskar J, Yazmaciyan Aren, Matt Gebhard J, Alsalloum Abdullah Y, Almasabi Khulud, Sakhatskyi Kostiantyn, Yakunin Sergii, Zheng Xiaopeng, Naphade Rounak, Nematulloev Saidkhodzha, Yeddu Vishal, Baran Derya, Armin Ardalan, Saidaminov Makhsud I, Kovalenko Maksym V, Mohammed Omar F, Bakr Osman M

机构信息

KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland.

出版信息

Adv Mater. 2022 Nov;34(47):e2202390. doi: 10.1002/adma.202202390. Epub 2022 Oct 19.

Abstract

Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.

摘要

单晶卤化物钙钛矿具有高迁移率和长寿命的光生载流子,这使其成为需要厚半导体的应用的理想候选材料,如电离辐射探测器、核电池和聚光光伏。然而,随着厚度增加,电荷收集效率会降低;因此,需要数十到数百伏的外部偏压才能从厚钙钛矿层中提取电荷,这会导致大量暗电流以及钙钛矿吸收层的快速降解。然而,延长载流子扩散长度可以缓解许多预期问题,这些问题阻碍了钙钛矿在上述应用中的实际应用。在此,制备了比最先进的钙钛矿多晶薄膜厚400倍的单晶钙钛矿太阳能电池,但在没有外部偏压的情况下仍保持高电荷收集效率。厚度为110、214和290 µm的电池分别显示出20.0%、18.4%和14.7%的功率转换效率(PCE)。尽管厚度增加,但高PCE仍能显著保持,这是因为这些电池中电子扩散长度较长,根据厚度依赖的短路电流估计,在1个太阳光照下约为0.45 mm。这些结果为使钙钛矿器件适用于需要厚有源层的光电子应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验