Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria.
KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
J Phys Chem Lett. 2023 Jul 13;14(27):6309-6314. doi: 10.1021/acs.jpclett.3c01158. Epub 2023 Jul 5.
A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N-H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy.
旋转的有机阳离子和动态无序的软无机笼是有机-无机卤化铅钙钛矿的显著特征。理解这两个子系统之间的相互作用是一个具有挑战性的问题,但正是这种耦合被广泛认为是这些材料中光载流子独特行为的原因。在这项工作中,我们利用有机阳离子的极化率强烈依赖于环境静电场这一事实,将分子作为晶格单元内局部晶场的敏感探针。我们通过红外光谱测量 C/N-H 键伸缩模式的平均极化率,这使我们能够推断出阳离子分子的运动特征,确定局部晶场的大小,并对氢和卤化物原子之间氢键的强度进行估计。我们的结果为使用红外键光谱理解卤化铅钙钛矿中的电场铺平了道路。