Institute for Musculoskeletal Health, School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Department of Rehabilitation, Aged and Extended Care, Flinders University, Adelaide, Australia.
Cochrane Database Syst Rev. 2022 Sep 7;9(9):CD001704. doi: 10.1002/14651858.CD001704.pub5.
Improving mobility outcomes after hip fracture is key to recovery. Possible strategies include gait training, exercise and muscle stimulation. This is an update of a Cochrane Review last published in 2011.
To evaluate the effects (benefits and harms) of interventions aimed at improving mobility and physical functioning after hip fracture surgery in adults.
We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, trial registers and reference lists, to March 2021.
All randomised or quasi-randomised trials assessing mobility strategies after hip fracture surgery. Eligible strategies aimed to improve mobility and included care programmes, exercise (gait, balance and functional training, resistance/strength training, endurance, flexibility, three-dimensional (3D) exercise and general physical activity) or muscle stimulation. Intervention was compared with usual care (in-hospital) or with usual care, no intervention, sham exercise or social visit (post-hospital).
Members of the review author team independently selected trials for inclusion, assessed risk of bias and extracted data. We used standard methodological procedures expected by Cochrane. We used the assessment time point closest to four months for in-hospital studies, and the time point closest to the end of the intervention for post-hospital studies. Critical outcomes were mobility, walking speed, functioning, health-related quality of life, mortality, adverse effects and return to living at pre-fracture residence.
We included 40 randomised controlled trials (RCTs) with 4059 participants from 17 countries. On average, participants were 80 years old and 80% were women. The median number of study participants was 81 and all trials had unclear or high risk of bias for one or more domains. Most trials excluded people with cognitive impairment (70%), immobility and/or medical conditions affecting mobility (72%). In-hospital setting, mobility strategy versus control Eighteen trials (1433 participants) compared mobility strategies with control (usual care) in hospitals. Overall, such strategies may lead to a moderate, clinically-meaningful increase in mobility (standardised mean difference (SMD) 0.53, 95% confidence interval (CI) 0.10 to 0.96; 7 studies, 507 participants; low-certainty evidence) and a small, clinically meaningful improvement in walking speed (CI crosses zero so does not rule out a lack of effect (SMD 0.16, 95% CI -0.05 to 0.37; 6 studies, 360 participants; moderate-certainty evidence). Mobility strategies may make little or no difference to short-term (risk ratio (RR) 1.06, 95% CI 0.48 to 2.30; 6 studies, 489 participants; low-certainty evidence) or long-term mortality (RR 1.22, 95% CI 0.48 to 3.12; 2 studies, 133 participants; low-certainty evidence), adverse events measured by hospital re-admission (RR 0.70, 95% CI 0.44 to 1.11; 4 studies, 322 participants; low-certainty evidence), or return to pre-fracture residence (RR 1.07, 95% CI 0.73 to 1.56; 2 studies, 240 participants; low-certainty evidence). We are uncertain whether mobility strategies improve functioning or health-related quality of life as the certainty of evidence was very low. Gait, balance and functional training probably causes a moderate improvement in mobility (SMD 0.57, 95% CI 0.07 to 1.06; 6 studies, 463 participants; moderate-certainty evidence). There was little or no difference in effects on mobility for resistance training. No studies of other types of exercise or electrical stimulation reported mobility outcomes. Post-hospital setting, mobility strategy versus control Twenty-two trials (2626 participants) compared mobility strategies with control (usual care, no intervention, sham exercise or social visit) in the post-hospital setting. Mobility strategies lead to a small, clinically meaningful increase in mobility (SMD 0.32, 95% CI 0.11 to 0.54; 7 studies, 761 participants; high-certainty evidence) and a small, clinically meaningful improvement in walking speed compared to control (SMD 0.16, 95% CI 0.04 to 0.29; 14 studies, 1067 participants; high-certainty evidence). Mobility strategies lead to a small, non-clinically meaningful increase in functioning (SMD 0.23, 95% CI 0.10 to 0.36; 9 studies, 936 participants; high-certainty evidence), and probably lead to a slight increase in quality of life that may not be clinically meaningful (SMD 0.14, 95% CI -0.00 to 0.29; 10 studies, 785 participants; moderate-certainty evidence). Mobility strategies probably make little or no difference to short-term mortality (RR 1.01, 95% CI 0.49 to 2.06; 8 studies, 737 participants; moderate-certainty evidence). Mobility strategies may make little or no difference to long-term mortality (RR 0.73, 95% CI 0.39 to 1.37; 4 studies, 588 participants; low-certainty evidence) or adverse events measured by hospital re-admission (95% CI includes a large reduction and large increase, RR 0.86, 95% CI 0.52 to 1.42; 2 studies, 206 participants; low-certainty evidence). Training involving gait, balance and functional exercise leads to a small, clinically meaningful increase in mobility (SMD 0.20, 95% CI 0.05 to 0.36; 5 studies, 621 participants; high-certainty evidence), while training classified as being primarily resistance or strength exercise may lead to a clinically meaningful increase in mobility measured using distance walked in six minutes (mean difference (MD) 55.65, 95% CI 28.58 to 82.72; 3 studies, 198 participants; low-certainty evidence). Training involving multiple intervention components probably leads to a substantial, clinically meaningful increase in mobility (SMD 0.94, 95% CI 0.53 to 1.34; 2 studies, 104 participants; moderate-certainty evidence). We are uncertain of the effect of aerobic training on mobility (very low-certainty evidence). No studies of other types of exercise or electrical stimulation reported mobility outcomes.
AUTHORS' CONCLUSIONS: Interventions targeting improvement in mobility after hip fracture may cause clinically meaningful improvement in mobility and walking speed in hospital and post-hospital settings, compared with conventional care. Interventions that include training of gait, balance and functional tasks are particularly effective. There was little or no between-group difference in the number of adverse events reported. Future trials should include long-term follow-up and economic outcomes, determine the relative impact of different types of exercise and establish effectiveness in emerging economies.
改善髋部骨折后移动能力是康复的关键。可能的策略包括步态训练、运动和肌肉刺激。这是对 2011 年发表的 Cochrane 综述的更新。
评估髋部骨折手术后旨在改善移动能力和身体功能的干预措施的效果(益处和危害)。
我们检索了 Cochrane 骨骼、关节和肌肉创伤组的专业注册库、Cochrane 对照试验中心注册库、MEDLINE、Embase、CINAHL、试验注册库和参考文献列表,截至 2021 年 3 月。
所有评估髋部骨折手术后移动策略的随机或准随机试验。符合条件的策略旨在提高移动能力,并包括护理方案、运动(步态、平衡和功能训练、阻力/力量训练、耐力、灵活性、三维(3D)运动和一般身体活动)或肌肉刺激。干预措施与院内常规护理或常规护理、无干预、假运动或社会访问(院后)进行比较。
综述作者团队的成员独立选择试验进行纳入、评估偏倚风险并提取数据。我们使用了 Cochrane 预期的标准方法程序。我们使用最接近四个月的评估时间点进行院内研究,最接近干预结束的时间点进行院后研究。关键结果是移动能力、行走速度、功能、健康相关生活质量、死亡率、不良影响和恢复到骨折前住所。
我们纳入了 40 项随机对照试验(RCTs),涉及 17 个国家的 4059 名参与者。平均而言,参与者年龄为 80 岁,80%为女性。研究参与者的中位数为 81 人,所有试验在一个或多个领域都存在不明确或高偏倚风险。大多数试验排除了认知障碍(70%)、无法移动和/或影响移动能力的医疗状况(72%)的人。院内环境下,移动策略与对照组:18 项试验(1433 名参与者)比较了移动策略与医院的对照组(常规护理)。总体而言,这种策略可能会导致移动能力的适度、临床意义的增加(标准化均数差(SMD)0.53,95%置信区间(CI)0.10 至 0.96;7 项研究,507 名参与者;低确定性证据)和行走速度的小但有临床意义的改善(CI 不排除缺乏效果(SMD 0.16,95%CI-0.05 至 0.37;6 项研究,360 名参与者;中度确定性证据)。移动策略可能对短期(风险比(RR)1.06,95%CI 0.48 至 2.30;6 项研究,489 名参与者;低确定性证据)或长期死亡率(RR 1.22,95%CI 0.48 至 3.12;2 项研究,133 名参与者;低确定性证据)、通过医院再入院测量的不良事件(RR 0.70,95%CI 0.44 至 1.11;4 项研究,322 名参与者;低确定性证据)或恢复到骨折前住所(RR 1.07,95%CI 0.73 至 1.56;2 项研究,240 名参与者;低确定性证据)没有影响。我们不确定移动策略是否能改善功能或健康相关生活质量,因为证据的确定性非常低。步态、平衡和功能训练可能会适度改善移动能力(SMD 0.57,95%CI 0.07 至 1.06;6 项研究,463 名参与者;中等确定性证据)。在阻力训练方面,移动能力没有差异。没有关于其他类型运动或电刺激的研究报告移动结果。院后环境下,移动策略与对照组:22 项试验(2626 名参与者)比较了移动策略与对照组(常规护理、无干预、假运动或社会访问)在院后环境下的情况。移动策略可使移动能力小幅度但具有临床意义的增加(SMD 0.32,95%CI 0.11 至 0.54;7 项研究,761 名参与者;高确定性证据)和行走速度的小但具有临床意义的改善(SMD 0.16,95%CI 0.04 至 0.29;14 项研究,1067 名参与者;高确定性证据)。移动策略可使功能小幅度但具有临床意义的增加(SMD 0.23,95%CI 0.10 至 0.36;9 项研究,936 名参与者;高确定性证据),并且可能会导致健康相关生活质量的轻微但无临床意义的提高(SMD 0.14,95%CI-0.00 至 0.29;10 项研究,785 名参与者;中等确定性证据)。移动策略可能对短期死亡率(RR 1.01,95%CI 0.49 至 2.06;8 项研究,737 名参与者;中等确定性证据)没有影响。移动策略可能对长期死亡率(RR 0.73,95%CI 0.39 至 1.37;4 项研究,588 名参与者;低确定性证据)或通过医院再入院测量的不良事件(95%CI 包括大量减少和大量增加,RR 0.86,95%CI 0.52 至 1.42;2 项研究,206 名参与者;低确定性证据)没有影响。涉及步态、平衡和功能运动的训练可使移动能力小幅度但具有临床意义的增加(SMD 0.20,95%CI 0.05 至 0.36;5 项研究,621 名参与者;高确定性证据),而主要为阻力或力量训练的训练可能会导致步行六分钟距离的移动能力有临床意义的增加(MD 55.65,95%CI 28.58 至 82.72;3 项研究,198 名参与者;低确定性证据)。涉及多个干预组成部分的训练可能会使移动能力大幅度提高,具有临床意义(SMD 0.94,95%CI 0.53 至 1.34;2 项研究,104 名参与者;中等确定性证据)。我们不确定有氧运动对移动能力的影响(非常低确定性证据)。没有关于其他类型运动或电刺激的研究报告移动结果。
髋部骨折后针对改善移动能力的干预措施可能会改善住院和出院后的移动能力和行走速度,与常规护理相比。包括步态、平衡和功能任务训练的干预措施特别有效。报告的不良事件数量没有组间差异。未来的试验应包括长期随访和经济结果,确定不同类型运动的相对影响,并确定在新兴经济体中的有效性。