Suppr超能文献

使用双峰原子力显微镜揭示纳米颗粒/环氧树脂界面的纳米级弹性和粘附特性。

Unraveling Nanoscale Elastic and Adhesive Properties at the Nanoparticle/Epoxy Interface Using Bimodal Atomic Force Microscopy.

作者信息

Nguyen Hung K, Shundo Atsuomi, Liang Xiaobin, Yamamoto Satoru, Tanaka Keiji, Nakajima Ken

机构信息

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan.

Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42713-42722. doi: 10.1021/acsami.2c12335. Epub 2022 Sep 7.

Abstract

The addition of a small fraction of solid nanoparticles to thermosetting polymers can substantially improve their fracture toughness, while maintaining various intrinsic thermomechanical properties. The underlying mechanism is largely related to the debonding process and subsequent formation of nanovoids at a nanoscale nanoparticle/epoxy interface, which is thought to be associated with a change in the structural and mechanical properties of the formed epoxy network at the interface compared with the matrix region. However, a direct characterization of the local physical properties at this nanoscale interface remains significantly challenging. Here, we employ a recently developed bimodal atomic force microscopy technique for the direct mapping of nanoscale elastic and adhesive responses of an amine-cured epoxy resin filled with ∼50 nm diameter silica nanoparticles. The obtained elastic modulus and dissipated energy maps with high spatial resolution evidence the existence of a ∼20-nm-thick interfacial epoxy layer surrounding the nanoparticles, which exhibits a reduced modulus and weaker adhesive response in comparison with the matrix properties. While the presence of such a soft and weak-adhesive interfacial layer is found not to affect the architecture of structural heterogeneities in the epoxy matrix, it conceivably supports the toughening mechanism related to the debonding and plastic nanovoid growth at the silica/epoxy interface. The incorporation of this soft interfacial layer into the Halpin-Tsai model also provides a good explanation for the effect of the silica fraction on the tensile modulus of cured epoxy nanocomposites.

摘要

在热固性聚合物中添加一小部分固体纳米颗粒,可以在保持各种固有热机械性能的同时,大幅提高其断裂韧性。其潜在机制很大程度上与纳米颗粒/环氧树脂界面处的脱粘过程以及随后纳米级纳米空洞的形成有关,这被认为与界面处形成的环氧网络与基体区域相比在结构和力学性能上的变化有关。然而,直接表征这个纳米级界面处的局部物理性质仍然极具挑战性。在此,我们采用一种最近开发的双峰原子力显微镜技术,直接绘制填充有直径约50 nm二氧化硅纳米颗粒的胺固化环氧树脂的纳米级弹性和粘附响应。获得的具有高空间分辨率的弹性模量和耗散能量图证明,纳米颗粒周围存在一个约20 nm厚的界面环氧层,与基体性能相比,该界面层表现出降低的模量和较弱的粘附响应。虽然发现这种柔软且粘附力弱的界面层的存在不会影响环氧基体中结构不均匀性的结构,但可以想象它支持了与二氧化硅/环氧界面处的脱粘和塑性纳米空洞生长相关的增韧机制。将这种柔软的界面层纳入Halpin-Tsai模型,也很好地解释了二氧化硅含量对固化环氧纳米复合材料拉伸模量的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验