Mechanical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box, 23874, Qatar.
ERMAKSAN, Bursa, 16065, Turkey; Mechanical Engineering Department, Gazi University, Ankara, 06570, Turkey; Additive Manufacturing Technologies Research and Application Center-EKTAM, Gazi University, Ankara, , 06560, Turkey.
J Mech Behav Biomed Mater. 2022 Nov;135:105428. doi: 10.1016/j.jmbbm.2022.105428. Epub 2022 Aug 31.
AM has revolutionized the manufacturing industry, involving several operating parameters that may affect the properties of the final manufactured part. In AM, LPBF has proved its reliability in producing dense components; however, process development for every material necessitates extensive testing. Even the tiniest change can negate all the data for the same material. It is vital to have a P-P correlation that can train itself following a change in powder or machine to achieve defects-free parts and optimal properties. These goals cannot be met alone by multi-physics. One of the ways to address this issue is to apply ML, but it requires a huge data set for training and testing purposes. A framework has been developed for Co-Cr S-S curves to resolve this issue. Twenty-two experimental S-S curves have been generated to produce YS, TS, and EL data points. In combination with DNN, these data points have been applied to the validated and tested GPS-surrogate model to develop a smart processing window to achieve desired YS, TS, and EL. LP, LSS, HD, and PLT have been selected during the whole framework as inputs, while YS, TS, and EL have been classified as outputs. The output of the smart window was verified experimentally. It is found that the highest YS (1110.91 MPa) is attained using LP = 180 W, LSS = 600 mm/s and HD = 70 μm, while least YS (645.05 MPa) is identified using LP = 160 W, LSS = 900 mm/s and HD = 70 μm. For TS, the maximum (165.91 MPa) and minimum (689.73 MPa) values have been achieved using LP = 180 W, LSS = 900 mm/s and HD = 70 μm, and LP = 180 W, LSS = 1000 mm/s and HD = 70 μm, respectively. In the case of EL, LP = 180 W, LSS = 700 mm/s and HD = 70 μm, and LP = 180 W, LSS = 600 mm/s and HD = 70 μm, resulted 23.04% and 0.789% EL, respectively. Using CC, LP and HD did not significantly affect the TS, YS, and EL, while a negative relationship has been found for LSS with TS, YS, and EL. The smart processing window showed that the YS and TS could be achieved at low-high LP and low LSS at the cost of EL. This study provides a technique for framework development in the case of P-P relation based on the provided inputs and the corresponding outputs, leading toward process smartification.
增材制造(AM)彻底改变了制造业,涉及多个可能影响最终制造部件性能的操作参数。在 AM 中,LPBF 已被证明在生产致密部件方面是可靠的;然而,每种材料的工艺开发都需要进行广泛的测试。即使是最小的变化也可能否定同一种材料的所有数据。拥有能够在粉末或机器发生变化后自行进行训练以实现无缺陷零件和最佳性能的 P-P 相关性至关重要。单凭多物理场无法实现这些目标。解决此问题的一种方法是应用机器学习(ML),但它需要大量数据集进行培训和测试。已经为 Co-Cr S-S 曲线开发了一个框架来解决这个问题。已经生成了 22 个实验 S-S 曲线,以生成 YS、TS 和 EL 数据点。结合 DNN,这些数据点已应用于经过验证和测试的 GPS 代理模型,以开发智能处理窗口,以实现所需的 YS、TS 和 EL。在整个框架中选择 LP、LSS、HD 和 PLT 作为输入,而 YS、TS 和 EL 被归类为输出。智能窗口的输出经过了实验验证。结果发现,使用 LP=180 W、LSS=600 mm/s 和 HD=70 μm 可获得最高的 YS(1110.91 MPa),而使用 LP=160 W、LSS=900 mm/s 和 HD=70 μm 可获得最低的 YS(645.05 MPa)。对于 TS,使用 LP=180 W、LSS=900 mm/s 和 HD=70 μm 以及 LP=180 W、LSS=1000 mm/s 和 HD=70 μm 分别可获得最大(165.91 MPa)和最小(689.73 MPa)值。对于 EL,使用 LP=180 W、LSS=700 mm/s 和 HD=70 μm 以及 LP=180 W、LSS=600 mm/s 和 HD=70 μm 分别可获得 23.04%和 0.789%的 EL。使用 CC,LP 和 HD 对 TS、YS 和 EL 没有显著影响,而 LSS 与 TS、YS 和 EL 呈负相关。智能处理窗口表明,YS 和 TS 可以在低高 LP 和低 LSS 的情况下实现,代价是 EL 降低。本研究提供了一种基于提供的输入和相应输出的基于 P-P 关系的框架开发技术,有助于实现工艺智能化。