Zhang Tao, An Cunbin, Xu Ye, Bi Pengqing, Chen Zhihao, Wang Jingwen, Yang Ni, Yang Yi, Xu Bowei, Yao Huifeng, Hao Xiaotao, Zhang Shaoqing, Hou Jianhui
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2022 Oct;34(43):e2207009. doi: 10.1002/adma.202207009. Epub 2022 Sep 27.
The correlation between molecular structure and photovoltaic performance is lagging for constructing high-performance indoor organic photovoltaic (OPV) cells. Herein, this relationship is investigated in depth by employing two medium-bandgap nonfullerene acceptors (NFAs). The newly synthesized NFA of FTCCBr exhibits a similar bandgap and molecular energy level, but a much stronger dipole moment and larger average electrostatic potential (ESP) compared with ITCC. After blending with the polymer donor PB2, the PB2:ITCC and PB2:FTCCBr blends exhibit favorable bulk-heterojunction morphologies and the same driving force, but the PB2:FTCCBr blend exhibits a large ESP difference. In OPV cells, the PB2:ITCC-based device produces a power conversion efficiency (PCE) of 11.0%, whereas the PB2:FTCCBr-based device gives an excellent PCE of 14.8% with an open-circuit voltage (V ) of 1.05 V, which is the highest value among OPV cells with V values above 1.0 V. When both acceptor-based devices work under a 1000 lux of 3000 K light-emitting diode, the PB2:ITCC-based 1 cm device yields a good PCE of 25.4%; in contrast, the PB2:FTCCBr-based 1 cm device outputs a record PCE of 30.2%. These results suggest that a large ESP offset in photovoltaic materials is important for achieving high-performance OPV cells.
在构建高性能室内有机光伏(OPV)电池方面,分子结构与光伏性能之间的相关性研究进展滞后。在此,通过使用两种中带隙非富勒烯受体(NFA)对这种关系进行了深入研究。新合成的FTCCBr NFA与ITCC相比,具有相似的带隙和分子能级,但偶极矩更强,平均静电势(ESP)更大。与聚合物给体PB2共混后,PB2:ITCC和PB2:FTCCBr共混物呈现出良好的体相异质结形态和相同的驱动力,但PB2:FTCCBr共混物表现出较大的ESP差异。在OPV电池中,基于PB2:ITCC的器件功率转换效率(PCE)为11.0%,而基于PB2:FTCCBr的器件具有优异的PCE,为14.8%,开路电压(V)为1.05 V,这是开路电压高于1.0 V的OPV电池中的最高值。当两种基于受体的器件在1000勒克斯、3000 K发光二极管下工作时,基于PB2:ITCC的1平方厘米器件产生了25.4%的良好PCE;相比之下,基于PB2:FTCCBr的1平方厘米器件输出了创纪录的30.2%的PCE。这些结果表明,光伏材料中较大的ESP偏移对于实现高性能OPV电池很重要。