Zimmermann Florian, Wang Pang, Tückmantel Christian, Maschwitz Timo, Heiderhoff Ralf, Brinkmann Kai Oliver, Riedl Thomas
Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, Wuppertal 42119, Germany.
Wuppertal Center for Smart Materials & Systems (CM@S), University of Wuppertal, Wuppertal 42119, Germany.
ACS Appl Mater Interfaces. 2025 May 28;17(21):30924-30931. doi: 10.1021/acsami.5c03977. Epub 2025 May 15.
Organic solar cells (OSCs) based on nonfullerene acceptors have seen tremendous progress recently, which qualifies them as a serious next-generation photovoltaic technology. However, their long-term stability is still a key issue that needs to be addressed on the way to commercialization. For relevant long-term stability, gas diffusion barriers are needed to protect the OSCs against ambient gases such as oxygen and moisture. Here, we explore gas diffusion barriers grown by atomic layer deposition (ALD) and demonstrate that aluminum oxide barriers grown at 80 °C afford OSCs that can be operated in the maximum power point in ambient air for more than 1000 h without notable degradation. At the same time, we show that under damp heat conditions, i.e., elevated temperature and humidity, better barriers are needed, that require growth temperatures of >80 °C, which are not tolerated by our standard type OSCs. We significantly improve the thermal stability of our OSCs by the introduction of aluminum-doped zinc oxide nanoparticles (AZO-NPs) as electron extraction layers. OSCs using AZO-NPs are shown to withstand the ALD growth of barrier layers up to 120 °C. Finally, by introducing an aluminum oxide/titanium oxide multilayer barrier, we successfully prevent the corrosion of neat aluminum oxide under damp heat conditions, and OSCs encapsulated with these nanolaminates retain above 80% of their initial efficiency after 1000 h at 70 °C/70% relative humidity. Our results contribute to the improved stability of NFA OSCs even in harsh environments.
基于非富勒烯受体的有机太阳能电池(OSC)近来取得了巨大进展,这使其有资格成为一种重要的下一代光伏技术。然而,其长期稳定性仍是商业化道路上需要解决的关键问题。对于相关的长期稳定性,需要气体扩散阻挡层来保护有机太阳能电池免受氧气和湿气等环境气体的影响。在此,我们探索了通过原子层沉积(ALD)生长的气体扩散阻挡层,并证明在80°C下生长的氧化铝阻挡层可使有机太阳能电池在环境空气中的最大功率点运行超过1000小时而无明显降解。同时,我们表明在湿热条件下,即高温高湿环境中,需要更好的阻挡层,这要求生长温度高于80°C,而我们的标准型有机太阳能电池无法耐受这样的温度。通过引入铝掺杂氧化锌纳米颗粒(AZO-NP)作为电子提取层,我们显著提高了有机太阳能电池的热稳定性。使用AZO-NP的有机太阳能电池被证明能够承受高达120°C的阻挡层ALD生长。最后,通过引入氧化铝/氧化钛多层阻挡层,我们成功防止了纯氧化铝在湿热条件下的腐蚀,并且用这些纳米层压板封装的有机太阳能电池在70°C/70%相对湿度下1000小时后仍保持其初始效率的80%以上。我们的结果有助于提高非富勒烯受体有机太阳能电池在恶劣环境中的稳定性。