Korea Institute of Fusion Energy, Daejeon, Republic of Korea.
Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea.
Nature. 2022 Sep;609(7926):269-275. doi: 10.1038/s41586-022-05008-1. Epub 2022 Sep 7.
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds. Here we report experiments at the Korea Superconducting Tokamak Advanced Research device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
核聚变是替代依赖碳的能源的最具吸引力的选择之一。尽管经过多年的研究和磁约束方法的稳步进展,在大型反应堆规模上从核聚变中获取能量仍然存在许多科学挑战。最先进的磁约束聚变装置还无法实现可持续的聚变性能,这需要超过 1 亿摄氏度的高温和足够的不稳定性控制,以确保数十秒量级的稳态运行。在这里,我们报告了在韩国超导托卡马克先进研究装置上进行的实验,该实验产生了一种满足上述大多数要求的等离子体聚变状态:由于丰富的快离子稳定了核心等离子体湍流,我们在没有等离子体边缘不稳定性或杂质积累的情况下,在 1 亿摄氏度的温度下产生持续时间长达 20 秒的等离子体。低等离子体密度与运行所需的中等输入功率相结合是通过保留高比例的快离子来建立这种状态的关键。这种状态很少受到干扰,即使没有复杂的控制,也可以可靠地维持,因此代表了通往商业聚变反应堆的有前途的途径。