Garcia Jeronimo, Kazakov Yevgen, Coelho Rui, Dreval Mykola, de la Luna Elena, Solano Emilia R, Štancar Žiga, Varela Jacobo, Baruzzo Matteo, Belli Emily, Bonofiglo Phillip J, Candy Jeff, Maggi Costanza F, Mailloux Joelle, Mazzi Samuele, Ongena Jef, Ruiz Juan R, Poradzinski Michal, Sharapov Sergei, Zarzoso David
CEA, IRFM, Saint-Paul-lez-Durance, France.
Laboratory for Plasma Physics, LPP-ERM/KMS, EUROfusion Consortium member, TEC Partner, Brussels, Belgium.
Nat Commun. 2024 Sep 8;15(1):7846. doi: 10.1038/s41467-024-52182-z.
Providing stable and clean energy sources is a necessity for the increasing demands of humanity. Energy produced by Deuterium (D) and Tritium (T) fusion reactions, in particular in tokamaks, is a promising path towards that goal. However, there is little experience with plasmas formed by D-T mixtures, since most of the experiments are currently performed in pure D. After more than 20 years, the Joint European Torus (JET) has carried out new D-T experiments with the aim of exploring some of the unique characteristics expected in future fusion reactors, such as the presence of highly energetic ions in low plasma rotation conditions. A new stable, high confinement and impurity-free D-T regime, with reduction of energy losses with respect to D, has been found. Multiscale physics mechanisms critically determine the thermal confinement. These crucial achievements importantly contribute to the establishment of fusion energy generation as an alternative to fossil fuels.
为满足人类日益增长的需求,提供稳定且清洁的能源至关重要。由氘(D)和氚(T)聚变反应产生的能量,尤其是在托卡马克装置中产生的能量,是实现这一目标的一条充满希望的途径。然而,关于由D-T混合物形成的等离子体的经验很少,因为目前大多数实验是在纯D中进行的。经过20多年后,欧洲联合环形装置(JET)开展了新的D-T实验,旨在探索未来聚变反应堆中预期的一些独特特性,例如在低等离子体旋转条件下高能离子的存在。已发现一种新的稳定、高约束且无杂质的D-T状态,相对于D而言能量损失有所降低。多尺度物理机制对热约束起着关键决定作用。这些关键成就为将聚变能源确立为化石燃料的替代能源做出了重要贡献。